> [!NOTE]
> For all $n \geq 1, x_{1},x_{2},\dots,x_{n}\in \mathbb{R},$ $| \sin (x_{1}+x_{2}+\dots+x_{n})| \leq |\sin x_{1}| + | \sin x_{2}| +\dots+ | \sin x_{n}| \tag{1}$
###### Proof
$(1)$ is clearly holds true for $n=1.$
Suppose $(1)$ holds true $n=k.$ Then $\begin{align}
|\sin (x_{1}+x_{2}+\dots+x_{k+1})| &= |\sin(x_{1}+x_{2}+\dots+\sin x_{k}) \cos(x_{k+1}) + \sin (x_{k+1}) \cos(x_{1}+x_{2}+\dots+x_{k}) | \\
& \leq |\sin (x_{1}+x_{2}+\dots+x_{k})| |\cos x_{k+1}| + |\sin x_{k+1}| |\cos(x_{1}+x_{2}+\dots+x_{k})| \\
&\leq |\sin (x_{1} + x_{2} +\dots+x_{k})| + |\sin x_{k+1}| \\
& \leq |\sin x_{1}| + | \sin x_{2}| +\dots+ | \sin x_{k}| + |\sin x_{k+1}|
\end{align}$thus by [[Induction Principle|mathematical induction]], $(1)$ holds true for all $n$ as above.