**Theorem**
If $x>-1$ then for every $n \in \mathbb{N}$, $(1+x)^{n} \geq 1+nx$
**Proof**
Base case: if $n=1$ then $(1+x)^{n}=1+x=1+nx$ so the statement is true for $n=1$.
Now suppose true for $n=k$ for some $k \in \mathbb{N}$. So $(1+x)^{k} \geq 1+kx$. Note that $1+x>0$ so multiplying both sides of the inequality by it gives: $\begin{align}
(1+x)^{k+1} &= (1+x)(1+x)^{k} \\
&\geq (1+x)(1+kx) \\
&= 1+x+kx+kx^{2} \\
&> 1+(k+1)x
\end{align}$since $kx^{2}>0. \quad \square$
Common application is [[x=1+h proof]].
### Theorems
- [[Euler's Number as a Convergent Real Sequence]].
- [[There is a unique real number that is the square root of 2]] and [[Existence & uniqueness nth root of positive reals]].