In probability theory, a **branching process** is a type of discrete‐time stochastic process that models the evolution of a population in which each individual in generation $n$ independently produces some random number of “offspring” in generation $n+1$.
A common example is the **Galton–Watson process**.
# Definitions
> [!NOTE] Definition (ST227)
> Let $X_0 \in \mathbb{N}$. Let $Y$ be a [[Random Variables|random variable]] such that $\mathbb{P}(Y \in \mathbb{N} \cup\{0\})=1$ (state space is $\mathbb{N} \cup \{ \}$). Let $\left(X_n\right)_{n \geq 0}$ be a [[Stochastic Process|stochastic process]] such that for every $n \in \mathbb{N} \cup\{0\}$
>
> $
> \begin{array}{ll}
> X_{n+1}=\sum_{k=1}^{X_n} Y_{n k} & \text { if } X_n>0 \\
> X_{n+1}=0 & \text { if } X_n=0
> \end{array}
> $
>
> where $\left\{Y_{i j}, i \in \mathbb{N} \cup\{0\}, j \in \mathbb{N}\right\}$ are independent copies of $Y\left(Y_{i j} \sim Y, i \in \mathbb{N} \cup\{0\}\right.$, $j \in \mathbb{N}$ ).
>
> Then $\left(X_n\right)_{n \geq 0}$ is called a *branching process* with the *offspring distribution* $Y$.
# Properties