# Definition(s)
> [!NOTE] Definition 1 (Closed Sets in $\mathbb{R}^n$)
> Let $n$ be a positive integer. Given a [[Subsets|subset]] $X$ of the [[Real n-Space|real n-space]] $\mathbb{R}^n,$ we say that $X$ is closed iff, whenever a [[Sequences|sequence]] in $X,$ $(x_{j})_{j=1}^\infty$ [[Convergence|converges]] to $x\in \mathbb{R}^n$ then $x\in X.$
> [!Example] Example
> Contents
# Properties(s)
# Application(s)
**More examples**:
# Bibliography