> [!NOTE] Theorem
> Let $n \geq 1.$ Let $\mathbb{R}^{n}$ denote the [[Real n-Space|set of all n-tuples of real numbers]]. Let $+$ denote [[Addition in Real n-Space|real vector addition]]. Then $+$ is [[Commutativity|commutative]]: that is, for all $\underline{v}, \underline{w}\in \mathbb{R}^{n}$ $\underline{v}+\underline{w} =\underline{w}+\underline{v}.$
**Proof**: Let $\underline{v}=(a_{1},a_{2},\dots,a_{n})$ and $\underline{w}=(b_{1},\dots,b_{n}).$ Then by definition, $\underline{v}+\underline{w}=\begin{pmatrix}
a_{1} + b_{1} \\
a_{2}+b_{2} \\
\vdots \\
a_{n} +b_{n}
\end{pmatrix} = \begin{pmatrix}
b_{1} + a_{1} \\
b_{2}+a_{2} \\
\vdots \\
b_{n} +a_{n}
\end{pmatrix}=\underline{w}+\underline{v}.$