# Definition(s) > [!NOTE] Definition 1 (Conjugate) > Let $G$ be a [[Groups|group]] and $H$ a [[Subgroup|subgroup]] of $G.$ > A conjugate of $H$ is the set of the form $gHg^{-1}=\{ ghg^{-1} \mid h\in H \}$for some $g\in G.$ > [!Example] Example > Contents # Properties(s) # Application(s) A subgroup is [[Normal Subgroup|normal]] iff all its conjugates satisfy $gHg^{-1}=H.$ # Bibliography