> [!NOTE] **Definition** (Left & Right Coset)
>Let $(G,\circ)$ be a [[Groups|group]]. Let $(H,\circ)$ be a [[Subgroup|subgroup]] of $G.$ Let $a\in G.$
>
>The left coset of $H$ containing $a$ (or the left coset of $H$ modulo $a$) is $aH=\{ a\circ h \mid h\in H\}$
>
>The right coset of $H$ containing $a$ (or the right coset of $H$ modulo $a$) is $Ha=\{ h\circ a \mid h\in H \}$
**Notation:** if $H$ is [[Normal Subgroup|normal subgroup]] of $G$ then $aH=Ha.$ if $H$ is an ideal then we write $a+H$ instead on $aH.$
> [!Example]
> $3+2\mathbb{Z}$ is a left coset of the subgroup $2\mathbb{Z}$ of $(\mathbb{Z},+)$ modulo $3.$
>
# Properties
See [[Necessary Condition for Equality of Cosets]].
# Applications
[[Coset space]].