# Statement(s)
> [!NOTE] Equivalence of Left and Right Cosets in Abelian Group
> Let $(G,\circ)$ be an [[Groups|abelian group]] and $H$ a [[Subgroup|subgroup]] of $G.$ Then for all $g\in G,$ $gH=Hg$
# Proof
**Proof.** Let $g\in G$ and $g\circ h\in gH.$ Then by commutativity of $\circ,$ $g\circ h = h\circ g\in Hg,$ thus $gH \subset Hg.$ Similarly, $Hg \subset gH$ so $gH=Hg.$ $\blacksquare$
# Application(s)
**Consequences**:
**Examples**:
# Bibliography