# Definition(s)
> [!NOTE] Definition (Cycle Type)
> Let $n\in \mathbb{N}^+$, $S_{n}$ denote the [[Symmetric Groups of Finite Degree|nth symmetric group]] and $\sigma\in S_{n}$ be a permutation of $n$ letters. Then the cycle type of $\sigma$ is defined by $\prod_{k=1}^\infty k^{r_{k}}=1^{r_{1}}2^{r_{2}}3^{r_{3}}4^{r_{4}}\cdots$ where $r_{k}$ is the number of [[Cyclic Permutation of n Letters|cycles]] of length $k$ in the [[Existence of Disjoint Cycle Decomposition for Permutations of n Letters|disjoint cycle decomposition]] of $\sigma$.
**Remark**: some authors write $(r_{1},r_{2},r_{3},\dots)$ instead.
> [!Example] Example
> Contents
# Properties(s)
# Application(s)
**More examples**:
# Reference(s)