> [!NOTE] Definition (Determinant)
> For any [[Real Square Matrices|square matrix]] $A\in \mathbb{R}^{n\times n},$ there is an associated scalar $\det A$ called the **determinant** of $A$ which, regarded as a function, $\begin{align}
\mathbb{R}^{n\times n} &\to \mathbb{R} \\
A &\mapsto \det A
\end{align}$has the following properties with respect to [[Elementary Row Operation is Equivalent to Pre-Multiplying by Elementary Matrix|elementary matrices]]:
>
>1. $\det(S_{ij}A)=-\det A$
>2. $\det(M_{j}(\lambda)A)=\lambda \det A$
>3. $\det(A_{ij}(\lambda)A)=\det A$
>4. $\det I_{n}=1$
# Properties
> [!NOTE] Theorem (Properties of the determinant)
> The determinant $\det A$ of a matrix $A$ satisfies the following properties:
>1. If a row of $A$ is zero, then $\det A=0.$
>2. If two rows of $A$ are identical, then $\det A=0.$
>3. If $A$ is a diagonal matrix, that is $A_{ij}=0$ whenever $i\neq j$, then $\det A=a_{11}a_{22}\cdots a_{nn}.$
>4. If $A$ is an upper triangular matrix, that is $A_{ij}=0$ whenever $i>j$ then $\det A=$ $a_{11}a_{22}\cdots a_{nn}.$
>5. If $A$ is a lower triangular matrix, that is $A_{ij}=0$ whenever $i<j$, then $\det A=$ $a_{11}a_{22}\cdots a_{nn}.$
>Proof.