$D_{6}$ is called the dihedral group of symmetries of an equilateral triangle.
Let $\rho_{0}, \rho_{1}, \rho_{2}$ denote anticlockwise rotations about $O$ through angles $0, \frac{2\pi}{3}, \frac{4\pi}{3}$ respectively.
Let $\sigma_{1}, \sigma_{2}, \sigma_{3}$ denote reflections about the three different [[Altitude of Triangle|altitudes]].
![[Symmetries of an Equilateral Triangle.png|700]]
**Cayley Table**
| | | $\rho_{0}$ | $\rho_{1}$ | $\rho_{2}$ | $\sigma_{1}$ | $\sigma_{2}$ | $\sigma_{3}$ |
| --------- | ------------ | ------------ | :----------: | ------------ | ------------ | ------------ | ------------ |
| | $\rho_{0}$ | $\rho_{0}$ | $\rho_{1}$ | $\rho_{2}$ | $\sigma_{1}$ | $\sigma_{2}$ | $\sigma_{3}$ |
| | $\rho_{1}$ | $\rho_{1}$ | $\rho_{2}$ | $\rho_{0}$ | $\sigma_{3}$ | $\sigma_{1}$ | $\sigma_{2}$ |
| Do second | $\rho_{2}$ | $\rho_{2}$ | $\rho_{0}$ | $\rho_{1}$ | $\sigma_{2}$ | $\sigma_{3}$ | $\sigma_{1}$ |
| | $\sigma_{1}$ | $\sigma_{1}$ | $\sigma_{2}$ | $\sigma_{3}$ | $\rho_{0}$ | $\rho_{1}$ | $\rho_{2}$ |
| | $\sigma_{2}$ | $\sigma_{2}$ | $\sigma_{3}$ | $\sigma_{1}$ | $\rho_{2}$ | $\rho_{0}$ | $\rho_{1}$ |
| | $\sigma_{3}$ | $\sigma_{3}$ | $\sigma_{1}$ | $\sigma_{2}$ | $\rho_{1}$ | $\rho_{2}$ | $\rho_{0}$ |
### Theorems
- [[D6 is the smallest non-abelian group]]