###### **Proof**
Note that $x_{n}:= \left( 1+\frac{1}{n} \right)^{n} \leq e$:
$\begin{align}
x_{n} = \left( 1+\frac{1}{n} \right)^{n} &= \sum_{k=0}^{n} {n\choose k} \left( \frac{1}{n} \right)^{k} (1)^{n-k} = \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} \frac{1}{n^{k}} \\
&= \sum_{k=0}^{n} \frac{1}{k!} \frac{(n)(n-1)\dots(n-k+1)}{n^{k}} \\
&= \sum_{k=0}^{n} \frac{1}{k!} \left( \frac{n}{n} \cdot \frac{n-1}{n}\dots \frac{n-k+1}{n} \right) \leq \sum_{k=0}^{n} \frac{1}{k!} \leq e
\end{align}$
Similarly $\begin{align}
\left( 1+\frac{1}{n} \right)^{m+n} &= \sum_{k=0}^{n+m} {n+m\choose k} \frac{1}{n^{k}} \\
&= \sum_{k=0}^{n+m} \frac{1}{k!} \frac{(n+m)!}{(n+m-k)!} \frac{1}{n^k} \\
&\geq \sum_{k=0}^{m} \frac{1}{k!} \frac{(n+m)!}{(n+m-k)!} \frac{1}{n^{k}} \\
&= \sum_{k=0}^{m} \frac{1}{k!} \frac{(n+m)(n+m-1)\dots(n+m-k+1)}{n^{k}} \\
& \geq \sum_{k=0}^{m} \frac{1}{k!}
\end{align}$
Since $\frac{1}{\left( 1+\frac{1}{n} \right)}e\leq x_{n}\leq e$, by [[Sandwich Rule|sandwich rule]] $x_{n}\to e$ as $n\to \infty$.