> [!NOTE] Lemma
> Let $\left(X_n\right)_{n \geq 0}$ be a time-homogeneous discrete time Markov chain with the state space
> $S$. Then$\mathbb{P}\left(X_{n+k}=a \mid X_k=b\right)=\mathbb{P}\left(X_n=a \mid X_0=b\right), \quad a, b \in S, \quad n, k \in \mathbb{N} \cup\{0\}$
###### Proof
Suppose that $k \in \mathbb{N}$ is fixed. We proceed by induction on $\mathbb{N}$.
Let $n=1$. Then the statement is true by Definition.
Suppose that the statement is true for fixed $n \in \mathbb{N}$, that is
$
\mathbb{P}\left(X_{n+k}=a \mid X_k=b\right)=\mathbb{P}\left(X_n=a \mid X_0=b\right), \quad a, b \in S
$
We want to show that the statement is true for $n+1$, that is
$
\mathbb{P}\left(X_{n+1+k}=a \mid X_k=b\right)=\mathbb{P}\left(X_{n+1}=a \mid X_0=b\right), \quad a, b \in S
$
Observe that, by Definition 2.3.1, for any $k, n \in \mathbb{N}$ and any $a, b \in S$,
$
\mathbb{P}\left(X_{n+1+k}=a \mid X_{n+k}=b\right)=\mathbb{P}\left(X_1=a \mid X_0=b\right)=\mathbb{P}\left(X_{n+1}=a \mid X_n=b\right)
$
We have that
$
\begin{aligned}
\mathbb{P}\left(X_{n+1+k}=a \mid X_k=b\right) & =\sum_{x \in S} \mathbb{P}\left(X_{n+1+k}=a, X_{n+k}=x \mid X_k=b\right) \\
& =\sum_{x \in S} \mathbb{P}\left(X_{n+1+k}=a \mid X_{n+k}=x, X_k=b\right) \mathbb{P}\left(X_{n+k}=x \mid X_k=b\right) \\
& =\sum_{x \in S} \mathbb{P}\left(X_{n+1+k}=a \mid X_{n+k}=x\right) \mathbb{P}\left(X_{n+k}=x \mid X_k=b\right) \\
& =\sum_{x \in S} \mathbb{P}\left(X_{n+1}=a \mid X_n=x\right) \mathbb{P}\left(X_n=x \mid X_0=b\right) \\
& =\sum_{x \in S} \mathbb{P}\left(X_{n+1}=a, X_n=x \mid X_0=b\right) \\
& =\mathbb{P}\left(X_{n+1}=a \mid X_0=b\right)
\end{aligned}
$
Hence, the statement is true for $n=1$, and if it is true for $n \in \mathbb{N}$ then it is true for $n+1 \in \mathbb{N}$. By induction it follows that the statement is true for all $n \in \mathbb{N}$.