> [!NOTE] Lemma
> Let $\left(X_n\right)_{n \geq 0}$ be a discrete time [[Stochastic Process|stochastic process]] with the discrete state space $S$. Then $\left(X_n\right)_{n \geq 0}$ is [[Discrete-time Markov Chains|Markov]] if and only if
>
> $
> \mathbb{P}\left(X_{n+m}=x_{n+m} \mid X_m=x_m, \ldots, X_1=x_1, X_0=x_0\right)=\mathbb{P}\left(X_{n+m}=x_{n+m} \mid X_m=x_m\right)
> $
>
> for any $n, m \in N$, any $x_0, x_1, \ldots x_m \in S$ and any $x_{n+m} \in S$.
###### Proof
( $\impliedby$ ) This direction is proved by taking $n=1$.
$(\implies$ ) We proceed by induction on $n$.
For $n=1$ the statement is true by the definition of a Markov chain.
Suppose that the statement is true for a fixed $n \in N$. We will show that it is then true for $n+1$ as well.
Recall that for any three events $A, B, C$, $\mathbb{P}(A \cap B \mid C)=\mathbb{P}(A \mid B \cap C) \mathbb{P}(B \mid C). \tag {1}$
Also $
\mathbb{P}\left(X_{n+1}=x_{n+1} \mid X_n=x_n, X_k=x_k\right)=\mathbb{P}\left(X_{n+1}=x_{n+1} \mid X_n=x_n\right) \tag{2}
$for any $k, n \in \mathbb{N}, n \geq 1,0 \leq k<n$, and any $x_i \in S, i \in \mathbb{N} \cup\{0\}$ - which we can prove as follows: applying the [[Law of Total Probability|law of total probability]] yields $\begin{aligned}
& \mathbb{P}\left(X_{n+1}=x_{n+1} \mid X_n=x_n, X_k=x_k\right) \\
& =\sum_{x_j \in S, 0 \leq j \leq n-1, j \neq k} \mathbb{P}\left(X_{n+1}=x_{n+1}, X_{n-1}=x_{n-1}, \ldots, X_0=x_0 \mid X_n=x_n, X_k=x_k\right) \\
& =\sum_{x_j \in S, 0 \leq j \leq n-1, j \neq k}\left(P\left(X_{n+1}=x_{n+1} \mid X_n=x_n, X_{n-1}=x_{n-1}, \ldots X_j=x_j, \ldots, X_0=x_0\right)\right. \\
& \left.\times P\left(X_{n-1}=x_{n-1}, \ldots, X_j=x_j, \ldots, X_0=x_0 \mid X_n=x_n, X_k=x_k\right)\right) \\
& =P\left(X_{n+1}=x_{n+1} \mid X_n=x_n\right) \\
& \times \sum_{x_j \in S, 0 \leq j \leq n-1, j \neq k} P\left(X_{n-1}=x_{n-1}, \ldots, X_j=x_j, \ldots, X_0=x_0 \mid X_n=x_n, X_k=x_k\right) \\
& =\mathbb{P}\left(X_{n+1}=x_{n+1} \mid X_n=x_n\right).
\end{aligned}$
Applying the law of total probability again gives $\begin{aligned}
& \mathbb{P}\left(X_{n+m+1}=x_{n+m+1} \mid X_m=x_m, \ldots, X_1=x_1, X_0=x_0\right) \\
& =\sum_{x_{n+m} \in S} \mathbb{P}\left(X_{n+m+1}=x_{n+m+1}, X_{n+m}=x_{n+m} \mid X_m=x_m, \ldots, X_1=x_1, X_0=x_0\right) \\
& =\sum_{x_{n+m} \in S} \mathbb{P}\left(X_{n+m+1}=x_{n+m+1} \mid X_{n+m}=x_{n+m}, X_m=x_m, \ldots, X_1=x_1, X_0=x_0\right) \\
& \quad \times \mathbb{P}\left(X_{n+m}=x_{n+m} \mid X_m=x_{m+\ldots}, X_1=x_1, X_0=x_0\right) \\
& =\sum_{x_{n+m} \in S} \mathbb{P}\left(X_{n+m+1}=x_{n+m+1} \mid X_{n+m}=x_{n+m}\right) \quad \text { (by Markov property) } \\
& \quad \times \mathbb{P}\left(X_{n+m}=x_{n+m} \mid X_m=x_m\right) \quad \text { (by induction hypothesis) } \\
& =\sum_{x_{n+m} \in S} \mathbb{P}\left(X_{n+m+1}=x_{n+m+1} \mid X_{n+m}=x_{n+m}, X_m=x_m\right) \quad \text { (using (2)) } \\
& \quad \times \mathbb{P}\left(X_{n+m}=x_{n+m} \mid X_m=x_m\right) \\
& =\sum_{x_{n+m} \in S} \mathbb{P}\left(X_{n+m+1}=x_{n+m+1}, X_{n+m}=x_{m+m} \mid X_m=x_m\right) \quad \text { (using (1)) } \\
& =\mathbb{P}\left(X_{n+m+1}=x_{n+m+1} \mid X_m=x_m\right)
\end{aligned}$