# Statement(s)
> [!NOTE] Statement 1 (Necessary Conditions for Map on Real n-Space to be an Isometry)
> Let $L:\mathbb{R}^n \to \mathbb{R}^n$ be a [[Linear maps|linear operator]]. Then the following are equivalent:
>
> (1) $L$ is an [[Isometry|isometry]].
>
> (2) $L$ is [[Euclidean Norm|norm]] preserving: for all $\underline{x}\in \mathbb{R}^n,$ $\Vert L(\underline{x})\Vert = \Vert \underline{x} \Vert$
>
> (3) $L$ preserves [[Inner products|inner product]]: for all $\underline{x},\underline{y}\in \mathbb{R}^n,$ $\langle L(\underline{x}),L(\underline{y})\rangle =\langle \underline{x}, \underline{y}\rangle$
>
> (4) The [[Matrix representations of linear map|matrix]] of $A$ is [[Orthogonal endomorphisms of Euclidean spaces|orthogonal]].
# Proof(s)
**Proof of statement 1:**
(1) $\Rightarrow(2)$ : Using definition of the metric, defining property of isometries, and linearity of $L$ : $\|\mathbf{x}\|=d(\mathbf{x}, \mathbf{0})=d(L(\mathbf{x}), L(\mathbf{0}))=d(L(\mathbf{x}), \mathbf{0})=\|L(\mathbf{x})\|$.
$(2) \Rightarrow(3)$ : This follows from [[Euclidean Norm Satisfies Polarization Identity]].
$(3) \Rightarrow(4)$ : Now compute the elements of $A^T A$. By the formula for matrix multiplication$\left(A^T A\right)_{i j}=\sum_{k=1}^n\left(A^T\right)_{i k} A_{k j}=\sum_{k=1}^n A_{k i} A_{k j}=\sum_{k=1}^n L\left(\mathbf{e}_i\right)_k L\left(e_j\right)_k=\left\langle L\left(\mathbf{e}_i\right), L\left(e_j\right)\right\rangle$
So the entries of $A^T A$ are the inner products of the columns of $A$. Since the $\mathbf{e}_i$ are the standard basis, and by hypothesis $(3)$, $L$ preserves the inner product, we have
$\left(A^T A\right)_{i j}=\left\langle L\left(\mathbf{e}_i\right), L\left(e_j\right)\right\rangle=\left\langle\mathbf{e}_i, e_j\right\rangle= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}$
These are the elements of the identity matrix, so $A$ is orthogonal.
$(4) \Rightarrow(1)$ : Assuming $(4)$, $A$ is invertible with inverse $A^T$, so $L$ is a bijection. So we just need to check $L$ is distance preserving. First check that $L$ is norm preserving: $\begin{aligned}
\|L(\mathbf{x})\|^2 & =\langle L(\mathbf{x}), L(\mathbf{x})\rangle \\
& =(L(\mathbf{x}))^T L(\mathbf{x}) \text { using matrix notation for dot product } \\
& =(A \mathbf{x})^T(A \mathbf{x}) \text { writing } L(\mathbf{x})=A \mathbf{x} \\
& =\mathbf{x}^T A^T A \mathbf{x} \text { property of transpose } \\
& =\mathbf{x}^T \mathbf{x} \text { since } A \text { is orthogonal } \\
& =\langle\mathbf{x}, \mathbf{x}\rangle, \text { by definition of inner product } \\
& =\|\mathbf{x}\|^2, \text { by definition of norm. }
\end{aligned}$
Now distance preservation follows from the linearity of $L$: $d(L(\mathbf{x}), L(\mathbf{y}))=\|L(\mathbf{x})-L(\mathbf{y})\|=\|L(\mathbf{x}-\mathbf{y})\|=\|\mathbf{x}-\mathbf{y}\|=d(\mathbf{x}, \mathbf{y})$
Since $A$ has inverse $A^T, L$ is invertible, so $L$ is an isometry.
$\blacksquare$
# Application(s)
**Consequences**:
**Examples**:
# Bibliography