# Statement(s) > [!NOTE] Statement 1 (Translation Invariance of Euclidean Metric) > For all $x,y,z \in \mathbb{R}^m$ we have $d(x,y)= d(x-z, y-z)$ # Proof(s) **Proof of statement 1:** $d(x,y)=\lvert \lvert x-y \rvert \lvert = \lvert\lvert (x-z) -(y-z)\rvert \rvert = d(x-z, y-z) $ $\blacksquare$ **Proof 2.** ... $\blacksquare$ # Application(s) **Consequences**: **Examples**: # Bibliography