# Definitions
> [!NOTE] Definition
> Let $f: U \subset \mathbb{R}^{n}\to \mathbb{R}$ be a [[Real-Valued Function on Real n-Space (Multivariable Function)|real valued function of several real variables]]. The *gradient* of $f$, denoted $\nabla f,$ is defined as the [[List|n-tuple]] $\nabla f = \left( \frac{ \partial f }{ \partial x_{1} }, \dots, \frac{ \partial f }{ \partial x_{n} } \right)$where $\frac{ \partial f }{ \partial x_{1} }$ denotes the $i$-th [[Partial Derivatives (of Real-Valued Function on Real n-Space)|partial derivative]] of $f.$
# Applications
- [[Directional Derivative of Real-Valued Function of Several Real Variables]].
- [[Linear Approximation of Real-Valued Function on Real n-Space near a Point]].
- [[Normal Vector of Surface]] shows gradient vector is normal to [[Level Sets of Real-Valued Function of Several Real Variables]].
- [[Critical Point of Real-Valued Function on Real 2-Space]].
> [!Example]
> Consider $f:\mathbb{R}^{3} \to \mathbb{R}$ and $g:\mathbb{R}\to \mathbb{R}$ defined by $g(t)=f(\underline{r}(t))$, where $\underline{r}:\mathbb{R}\to \mathbb{R}^{3}$ is parametrised curve in $\mathbb{R}^{3}$. Show that $g'(t) = \nabla f \cdot \underline{r}'(t)$
>
>*Solution*. Using [[Chain Rule for Differentiability|chain rule]], $g'(t) = \frac{ \partial f }{ \partial x } \frac{dx}{dt} + \frac{ \partial f }{ \partial y } \frac{dy}{dt} +\frac{ \partial f }{ \partial z } \frac{dz}{dt} = \nabla \cdot \underline{r}'(t) $