# Definition(s)
Let $G$ be a [[Finite Group|finite group]] and $X$ a [[Finite Set|finite set]].
> [!NOTE] Definition 1 (Group Action)
> The map $\phi:G\times X\to X$ is an action of $G$ on $X$ iff it satisfies the following axioms
>
> (A1) For all $x\in X$, $\phi(1_{G},x)=x$
>
> (A2) For all $x \in X$ and $g,h\in G$, $\phi(g,\phi(h,x))=\phi(gh,x)$.
>
> We also say $G$ acts on $X$ if there exists such a map $\phi$
> [!Example] Example
> Contents
> [!NOTE] Definition 2 (Group Action)
> An action of $G$ on $X$ is a [[Homomorphism|homomorphism]] $\phi:G \to \text{Sym}(X)$.
# Properties(s)
# Application(s)
**More examples**:
# Bibliography