# Definitions
###### Group action axioms
Let $G$ be a [[Group]] and $X$ a [[Sets]].
The map $\phi:G\times X\to X$ is an action of $G$ on $X$ iff it satisfies the following axioms:
(A1) For all $x\in X$, $\phi(1_{G},x)=x$
(A2) For all $x \in X$ and $g,h\in G$, $\phi(g,\phi(h,x))=\phi(gh,x)$.
We also say $G$ acts on $X$ if there exists such a map $\phi$
###### As subgroup of symmetry group
An action of $G$ on $X$ is a [[Homomorphism|homomorphism]] $\phi:G \to \text{Sym}(X)$.