**Example**
Let $R_{1}=\mathbb{R}[x]$ and let $R_{2}=\mathbb{C}$. Define $\phi:R_{1} \to R_{2}$ as follows then $\phi(f(x))=f(i)$(i.e. $\phi$ evaluates $f(x) \in \mathbb{R}[x]$ at $x=i$) then $\phi$ is a [[Homomorphism of Rings]].
**Proof**
Similar to proof for [[Homomorphism from ring of polynomials over complex numbers to the complex numbers]].