# Statement(s)
> [!NOTE] Statement 1 (Homomorphism of Groups Preserves Integer Powers)
> Let $G,H$ be [[Groups|groups]] and $\phi:G\to H$ a [[Homomorphism|homomorphism]]. Then for all $g\in G,$ $m\in \mathbb{Z},$ $\phi(g^m)=\phi(g)^m$where $g^m$ denotes the $m$th [[Integer Power of Group Element|power]] of $g$.
**Remark**: Using additive notation, we may write $\phi(mg)=m\phi(g).$
# Proof(s)
**Proof of statement 1:** Follows by induction on $m\geq 0.$ By [[Inverse of Power of Group Element]], the statement is true for all $m\in \mathbb{Z}.$ $\blacksquare$
# Application(s)
**Consequences**:
**Examples**:
# Bibliography