**Theorem**
The function $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) =x$ is [[Continuous Real Function|continuous]].
**Proof (using [[Continuous Function (Epsilon-Delta Definition)|epsilon-delta]])**
Fix $c \in \mathbb{R}$, then for any $x\in \mathbb{R}$ $|f(x)-f(c)| = |x-c|$Given $\epsilon>0$, take $\delta = \epsilon$.
Whenever $|x-c|< \delta$, we have $|f(x)-f(c)|= |x-c| < \epsilon$which shows that $f$ is continuous.
**Proof (using [[Continuous Function (Sequential Continuity Definition)|sequence]])**
Fix $c\in \mathbb{R}$. Take $x_{n} \in \mathbb{R}$ with $x_{n} \to c$
Then $f(x_{n}) = x_{n} \to c = f(c)$ as $n \to \infty$.
So $f$ is continuous.