**Corollary (of [[Every rearrangement of a series with positive terms has the same limit|rearrangement lemma]]):**
If $\sum a_{n}$ is [[Absolutely Convergent Series|absolutely convergent]] then every rearrangement has the same limit.
Note that $(a_{n})$ is convergent but we can't apply rearrangement lemma directly since we do not have that $a_{n} \geq 0$.
**Proof** (similar to [[Absolutely Convergent Series is Convergent]]):
Define
$\begin{gather}
b_{n} =\begin{cases}
a_{n} & a_{n} > 0, \\
0 & a_{n} \leq 0;
\end{cases} &c_{n}= \begin{cases}
0 & a_{n} \geq 0, \\
-a_{n} & a_{n} <0.
\end{cases}\end{gather}$
Note that $b_{n} \leq |a_{n}|$, $c_{n} \leq |a_{n}|,$ and $a_{n} = b_{n} -c_{n}.$
By rearrangement lemma, we have $\sum_{n=1}^{\infty} b_{\sigma(n)} = \sum_{n=1}^{\infty}b_{n} \quad \text{and} \quad \sum_{n=1}^{\infty} c_{\sigma(n)} = \sum_{n=1}^{\infty}c_{n}$
Since $a_{\sigma(n)} = b_{\sigma(n)} - c_{\sigma(n)}$ it follows that $\sum a_{\sigma(n)} = \sum b_{\sigma(n)} - \sum c_{\sigma(n)} = \sum b_{n} - \sum c_{n} = \sum a_{n}$