> [!NOTE] Lemma
> Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a [[Probability Space|probability space]]. Let $A,B\in \mathcal{F}.$ The events $A$ and $B$ are [[Independence of Two Events|independent]] iff $\Omega \setminus A$ and $B$ are independent, where $\Omega \setminus A$ denotes a [[Set Difference|set difference]].
**Proof**: Note that $\Omega\setminus A \cap B = B \setminus A$since $\begin{align}
\Omega\setminus A \cap B &= \{ x\in \Omega : x\not \in A \} \cap B \\
&= \{ x\in \Omega : x \not \in A \land x\in B \} \\
&= \{ x\in \Omega \land x\in B : x \not \in A \} \\
&= \{ x\in B : x \not \in A \} \tag{*} \\
& = B \setminus A
\end{align}$using $B \subset A$ to gain $(*).$ Thus by [[Probability of Set Difference of Events]], $\begin{align}
\mathbb{P}(\Omega \setminus A \cap B) &= \mathbb{P}(B\setminus A) \\
&= \mathbb{P}(B) - \mathbb{P}(A \cap B) \\
&= \mathbb{P}(B) - \mathbb{P}(A) \cdot \mathbb{P}(B) \\
&=\mathbb{P}(B)[1-\mathbb{P}(A)] \\
&= \mathbb{P}(B) \mathbb{P}(\Omega\setminus A)
\end{align}$using [[Probability of Complement of Event]] to give the last line. $\square$
# Applications
**Consequences**: By [[Independent Events iff Independent Complements]].