Property of [[Integer Power of Real Number]].
**Lemma**
If $n\in \mathbb{N}$ and $x,y>0$ then $\begin{align}
x <y &\iff x^{n} < y^{n} \\
x \leq y &\iff x^{n} \leq y^{n} \\
x=y &\iff x^{n} = y^{n}
\end{align}$
**Proof**
1. WTS $x<y \iff x^{n}<y^{n}$.
Clearly the statement is true for $n=1$.
Now suppose $0<x^k<y^{k}$ for some $k\in \mathbb{N}$.
Then since $0<x<y$ we can use [[Multiplying inequalities]] to show that $0<x^{k+1}<y^{k+1}$.
Hence induction proves the forward implication.
Noting that if $x=y$ then clearly $x^{n}= y^{n}$, we obtain $x\leq y \implies x^{n}\leq y^{n}$ which is the contrapositive of the reverse implication $\square$.
2. Combining (1) and (3) gives (2).
3. Clearly $x=y \implies x^{n} \implies y^{n}$. To prove the reverse implication we show that $x \neq y \implies x^{n}\neq y^{n}$.
WLOG suppose $x<y$ then $x^{n}< y^{n} \quad \square$.