# Definition(s)
> [!NOTE] Definition 1 (Line in $\mathbb{R}^n$)
> A line in $\mathbb{R}^n$ is a subset of $\mathbb{R}^m$ of the form $\{ \underline{u}+\lambda \underline{v} \mid \lambda \in \mathbb{R}^n \}$ for some $\underline{u},\underline{v}\in \mathbb{R}^n.$
>
> $\underline{v}$ is known as its direction vector.
> [!NOTE] Definition 2 (Line in $\mathbb{R}^n$)
> The line in $\mathbb{R}^n$ through distinct $\mathbf{x},\mathbf{y}$ is given by $\{ \mathbf{z} \in \mathbb{R}^n \mid d(\mathbf{x},\mathbf{y}) = d(\mathbf{x},\mathbf{z})+d(\mathbf{z},\mathbf{y}) \}$
>
> where $d$ denotes the [[Euclidean Metric on Real n-Space|standard Euclidean metric]] on $\mathbb{R}^n.$
>
>
# Properties(s)
# Application(s)
**More examples**:
# Bibliography