> [!Definition]
> We say that a given function $f: \mathbb{R} \to \mathbb{R}$ is *a Lipschitz Function* or is *Lipschitz continuous* with *Lipschitz constant* $L>0$ if $\forall x,y \in \mathbb{R}, \quad |f(x)-f(y)| \leq L|x-y|.$
>
# Properties
> [!info]
> Any function with a bounded first derivative must be Lipschitz. See [[Uniqueness Theorem for Explicit First Order Initial Value Problem]]
>
> [!Lemma]
> Lipschitz Continuous $\implies$[[Continuous Real Function|Continuous]] on $\mathbb{R}$.
> *Proof*. Take $x,c \in \mathbb{R}$ and $\varepsilon>0.$ Whenever $|x-c|<\delta := \frac{\epsilon}{L} \implies |f(x) -f(c)| \leq L|x-c| < \epsilon$
> Since $\delta>0$, this shows that $f$ is continuous at every $c \in \mathbb{R}$.