Course summary: ...
----
# 1. Power Series I
| Definitions | Theorems | Examples |
| ---------------------------------------------------------- | --------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------ |
| [[Power Series]]. | | |
| [[Radius of Convergence of Complex Power Series]]. | [[Radius of Convergence of Complex Power Series]]. | [[Radius of Convergence of Geometric Series]]. |
| | [[Radius of Convergence of Absolute Real Power Series About Zero]]. | [[Radius of Convergence of Log Series]]. |
| | | [[Throwing away terms from Geometric Series Maintains Its Radius of Convergence]]. |
| | | Be able to use [[Ratio Test for Series]] to find radius of convergence. |
| | *[[Continuity of Real Power Series About Zero on Interval of Convergence]] | |
| [[Real Exponential Function as Power Series]]. | [[Real Exponential Function of Sum]]. | *[[Cauchy Product of Univariate Real Power Series About Zero Converges to Product]]. |
| | *[[Lower Bound for Real Exponential Function]]. | *[[Equivalence of Euler's Number as Convergent Real Sequence and Real Power Series]]. |
| | *[[Upper Bound for Real Exponential Function for all x<1]]. | |
| | [[Real Exponential Function is Strictly Increasing]]. | |
| [[Real Natural Logarithm Function]]. | [[Inverse of Real Exponential Function Exists, is Strictly Increasing and Continuous]]. | |
| | [[Real Natural Logarithm of Product]]. | |
| [[Real Power of Real Number]]. | [[Real Power Extends Integer Power of Real Number]]. | |
| | [[Product of Real Powers of a Real Number]]. | |
| | [[Real Natural Logarithm of Real Power of Real Number]]. | |
| | [[Real Power of Real Power of Real Number]]. | |
| | [[Real Exponential Function is Real Power of Euler's Number]]. | |
| | [[Tangent to Real Natural Logarithm at x = 1]]. | [[AM-GM Inequality]]. |
# 2. Limits and The Derivative
| Definitions | Theorems | Examples |
| ---------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------- | -------------------------------------------------- |
| [[Limit of Real Function at a Point]]. | *[[Limit of Continuous Real Function at a Point]]. | [[Dini's Theorem]]. |
| | [[Limit of Real Function by Convergent Real Sequences]]. | |
| | [[Algebra of Limits of Real Functions]]. | |
| One sided limits: [[Left Limit of Real Function at a Point]]; [[Right Limit of Real Function at a Point]]. | | |
| Infinite limits: [[Properly Divergent Univariate Real Function]]. | | |
| [[Limit at Infinity of Univariate Real Function]]. | | |
| [[Fréchet Differentiation]]. | [[Differentiablity implies Continuity]]. | |
| [[Derivative of Real Function]]. | [[Derivative of Sum of Differentiable Real Functions]]. | |
| | [[Derivative of Product of Differentiable Real Functions]]. | |
| | [[Derivative of Monomials]]. | |
| | *[[Weirestrass-Caratheodory Criterion for Differentiability of Real Function]]. | |
| | *[[Chain rule for derivative]]. | |
| | | |
| | [[Rolle's Theorem]]. | |
| | *[[Mean value theorem]]. | |
| | [[Positive Derivative Implies Strictly Increasing Real Function]]. | |
| | [[Real Function with Zero Derivative is Constant]]. | f'(x)=f(x) sol |
| | | |
| | [[Derivative of Inverse of Strictly Monotonic Differentiable Real Function]]. | [[Derivative of Real Natural Logarithm Function]]. |
| | | [[Derivative of Arcsine]]. |
# 3. Power Series II
| Definitions | Theorems | Examples |
| -------------------------------- | --------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------- |
| | [[Radius of Convergence of Derivative of Real Power Series About Zero]]. | |
| | *[[Power Series is Termwise Differentiable within Radius of Convergence]]. | Show that $f(x)=\sum_{n=1}^{\infty}x^{n}/n^{2}$ satisfies the DE: $xf''(x)+f'(x)=\frac{1}{1-x}$ |
| | [[Derivative of Real Exponential Function]]. | Find power series solution $xy''+y'+xy=0$ |
| | [[Derivative of Real Natural Logarithm Function]]. | |
| [[Cosine as Real Power Series]]. | [[Cosine of Sum]]; [[Sine of Sum]]. | |
| [[Sine as Real Power Series]]. | [[Pythagorean Trigonometric Identity]]; [[Unit Speed Parametrisation of Unit Circle]]. | |
| | [[Exponential Function in Terms of Trigonometric Functions (Euler's Formula)]]. Proof not given. Should be able to use to prove addition formulae. | |
| [[Tangent Function]]. | | |
# 4. Taylor's Theorem
| Definitions | Theorems | Examples |
| ----------- | ---------------------------------------------------------------------------- | -------------------------------------------------------- |
| | [[Cauchy Mean Value Theorem]]. | |
| | [[L'Hôpital's Rule For Limit of Quotient at a Point]]. | |
| | [[L'Hôpital's Rule For Limit of Quotient at Infinity]]. | |
| | | |
| | [[Taylor's Theorem With Lagrange Remainder for Real Function]]. | [[Taylor Expansion of Real Natural Logarithm Function]]. |
| | [[Taylor's Theorem With Schlömilch Remainder for Univariate Real Function]]. | [[Binomial Series]]. |
| | [[Taylor's Theorem With Cauchy Remainder for Univariate Real Function]]. | |
# 5. Riemann Integral
Note that the in this section, the Darboux integral is called the Riemann integral which is acceptable as their definitions can be proven to be equivalent.
| Definitions | Theorems | Examples |
| ----------------------------------------------------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------- |
| [[Finite Partition of Closed Real Interval]]. | | |
| [[Riemann integration]]; [[Riemann integration]]. | [[Upper Riemann Sum is Never Smaller than Lower Riemann Sum for The Same Finite Partition]]. | |
| [[Riemann integration]]; [[Riemann integration]]. | | |
| [[Riemann integration]]. | | Show that $f(x)=\begin{cases}1 & x\in \mathbb{Q} \\0 & x \not\in\mathbb{Q} \end{cases}$is not integrable; |
| | | *[[Darboux Integral of Thomae's Function is Zero]] |
| | | |
| [[Refinement of Finite Partition of Closed Real Interval]]; [[Common Refinement of Finite Partition of Closed Real Interval]]. | *[[Upper & Lower Riemann Sums of Refinement]]. | [[Darboux Integral of Constant]]. |
| | [[Upper & Lower Riemann Sums of Refinement]]. | |
| | [[Upper Riemann Integral is Never Smaller than Lower Riemann Integral]]. | |
| | [[Riemann's criterion for integrability]]. | |
| | | |
| [[Uniformly Continuous Real Function]]. | [[Continuous Real Function on Closed Real Interval is Uniformly Continuous]]. | [[Uniformly Continuous Real Function on Bounded Real Interval is Bounded]]. |
| | [[Continuous real functions are Riemann Integrable]]. | [[Existence of Limits of Uniformly Continuous Real Function on Open Real interval at End-points]] |
| | [[Monotone Real Function is Darboux Integrable]]. | *[[Piecewise Continuous Real Function is Darboux Integrable]]. |
| [[Mesh Size of Finite Partition of Closed Real Interval]]. | *[[Upper Darboux Sums of Darboux Integrable Function Converge to Darboux Integral as Mesh Size Approaches Zero]]. | |
| | | |
| [[Riemann integration]]. | Properties of Riemann/Darboux Integral: | |
| | *[[Linearity of Riemann integration]] - proved using [[Triangle Inequality for Supremum of Function on Interval]]. | |
| | [[Monotonicity of Riemann Integral]] - was left as exercise. | |
| | *[[Continuous Real Function of Darboux Integrable Function is Darboux Integrable]]. | If $f$ is integrable then $f^{2}$ is integrable on the same closed real interval. |
| | [[Product of Riemann integrable functions is also]]. | [[Cauchy-Schwartz Inequality for Darboux Integral]]. |
| | [[Triangle Inequality for Riemann Integral]]. | |
| | [[Finite Additivity of Riemann integral]] - sketch of proof given. | |
| | | |
| | [[Fundamental theorem of calculus]]. | |
| | [[Fundamental theorem of calculus]]. | |
| | [[Integration by Parts]]. | |
| | [[Integration by Substitution]]. | |
| | | |
| [[Improper Riemann Integral]]; [[Improper Integral Over Half Open Interval]]; [[Improper Integral Over Unbounded Closed Interval]]. | *[[Comparison Test for Improper Integrals over Unbounded Closed Interval]]. | [[Integral of Monomials]]. |
| | | |
| [[Integral Form of Gamma Function]]. | *[[Equivalence of Integral and Euler Forms of Gamma Function]]. | [[Gamma Function Extends Factorial]]. |
| [[Euler Form of Gamma Function]]. | | [[Stirling's Approximation]]. |
# Appendix. The Radius of Convergence Formula
| Definitions | Theorems | Examples |
| ----------- | --------------------------------------------------------------------------------- | -------- |
| | [[Formula for Radius of Convergence of Univariate Real Power Series About Zero]]. | |