*Question 1*
Note that for $r = \frac{1}{4},$ $\begin{align}
x(\theta) &= \frac{3}{4} \cos \theta + \frac{1}{4} \cos 3 \theta \\
y(\theta) &= \frac{3}{4} \sin \theta - \frac{1}{4} \sin 3 \theta
\end{align} \quad \quad t\in [0,2\pi]$so $\begin{align}
\frac{d}{d\theta} x (\theta) &= -\frac{3}{4} \sin \theta -\frac{3}{4} \sin 3\theta \\
\frac{d}{d\theta} y(\theta) &= \frac{3}{4} \cos \theta - \frac{3}{4} \cos 3\theta
\end{align}$Let $D$ denote the region enclosed by the curve $C$ parametrised by $(x(\theta), y(\theta)).$ Then by Green's Theorem with $P=-y$ and $Q = x$ $\begin{align}
\int \int _{D} 2 \, dx dy &= \int_{C} \left( x \frac{dy}{d\theta} - y \frac{dx}{d\theta} \right) \, d\theta \\
& = \int_{0}^{2\pi} \left(\frac{3}{4} \cos \theta + \frac{1}{4} \cos 3 \theta \right)\left(\frac{3}{4} \cos \theta - \frac{3}{4} \cos 3\theta\right) \\
& \quad + \left(\frac{3}{4} \sin \theta + \frac{3}{4} \sin 3\theta \right) \left(\frac{3}{4} \sin \theta - \frac{1}{4} \sin 3 \theta\right) \, d\theta \\
& = \frac{1}{16} \int_{0}^{2\pi} 9 \cos^{2} - 6 \cos\theta \cos 3 \theta - 3 \cos^{2} 3 \theta \\
& \quad \quad \quad \quad 9\sin^{2} \theta + 6 \sin\theta \sin 3\theta - 3\sin^{2} \theta \, d\theta \\
&= \frac{1}{16} \int_{0}^{2\pi} 6 - 6 \cos 4 \theta \, d \theta = \frac{1}{16} \times 12 \pi -0 \\
& = \frac{3}{4} \pi \\
\end{align}$so the area of $D$ is given by $\int \int_{D} \, dx \, dy = \frac{3}{8} \pi.$
*Question 2*
(a) Firstly $ \underline{r}_{u} \times \underline{r}_{v} = \begin{array}{|ccc|}
\underline{i} & \underline{j} & \underline{k} \\
\cos v & \sin v & -\sin v \\
-u\sin v & u \cos v & -u\cos v
\end{array} = \begin{pmatrix}
0 \\
u \\
u
\end{pmatrix}$so choose $+$ sign since $u$ is positive and we want $\hat{\underline{n}}$ upward-pointing.
Also $\nabla \times \underline{F} = \begin{array}{|ccc|}
\underline{i} & \underline{j} & \underline{k} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
y^{2} & x &z
\end{array} = \begin{pmatrix}
0 \\
0 \\
1-2y
\end{pmatrix} $Therefore $\begin{align}
\int\int_{S} \nabla \times \underline{F} \cdot \underline{\hat{n}} \, dS &= \int_{0}^{2\pi} \int_{0}^{1} \begin{pmatrix}
0 \\
0 \\
1-2u\sin v
\end{pmatrix} \cdot \begin{pmatrix}
0 \\
u \\
u
\end{pmatrix} \, du \, dv \\
& = \int_{0}^{2\pi} \int_{0}^{1} u - 2u^{2} \sin v \, du \, dv \\
& = \int_{0}^{2\pi} \left[ \frac{u^{2}}{2} -\frac{2}{3}u^{3} \sin v \right]_{0}^{1} \, dx \\
&= \int_{0}^{2\pi} \frac{1}{2} - \frac{2}{3} \sin v \, dv \\
& = \pi
\end{align}$
(b) The boundary curve $C$ of the surface is parametrised by $\underline{r}(t) = (\cos t, \sin t, 2 - \sin t), \quad t\in [0,2\pi].$So by Stoke's theorem $\begin{align}
\int\int_{S} \nabla \times \underline{F} \cdot \underline{\hat{n}} \, dS &= \oint_{C} \underline{F} \cdot \, d\underline{r} \\
& = \int_{0}^{2\pi} \begin{pmatrix}
\sin^{2} t \\
\cos t \\
2 - \sin t
\end{pmatrix} \cdot \begin{pmatrix}
-\sin t \\
\cos t \\
-\cos t
\end{pmatrix} \, dt \\
& = \int_{0}^{2\pi} -\sin^{3} t + \cos^{2} t -2\cos t + \sin t\cos t \, dt \\
& = \pi
\end{align}$as required.
*Question 3*
(a) See code and plot below.
![[Pasted image 20240314104147.png]]
![[Pasted image 20240314104221.png]]
(b) Firstly $\underline{r}_{u} \times \underline{r}_{v} = \begin{array}{|ccc|}
\underline{i} & \underline{j} & \underline{k} \\
-\sin u \cos v & -\sin u \sin v & \cos u \\
-(2+\cos u) \sin v & (2+\cos u) \cos v & 0
\end{array} = \begin{pmatrix}
-\cos u\cos v (2+\cos u) \\
\vdots \\
\vdots
\end{pmatrix}$
so choose $-$ sign since we want $\underline{\hat{n}}$ outward-pointing. Choose $\underline{F}(x,y,z) = (x,0,0)$ then $\nabla \cdot F = \begin{pmatrix}
\partial_{x} \\
\partial_{y} \\
\partial _{z}
\end{pmatrix} \cdot \begin{pmatrix}
x \\
0 \\
0
\end{pmatrix} =1 $Therefore using Divergence theorem $\begin{align}
\int \int \int_{V} \, dV &= \int \int_{S} \underline{F} \cdot \underline{\hat{n}} \, dS \\
& = \int_{0}^{2\pi} \int_{0}^{2\pi} \begin{pmatrix}
(2+\cos u)\cos v \\
0 \\
0
\end{pmatrix} \cdot \begin{pmatrix}
\cos u\cos v (2+\cos u) \\
\vdots \\
\vdots
\end{pmatrix} \, du \, dv \\
&= \int_{0}^{2\pi} \int_{0}^{2\pi} \cos u \cos^{2}v (4+4\cos u + \cos^{2} u ) \, du \, dv \\
& = \int_{0}^{2\pi} \cos^{2} v \, dv \int_{0}^{2\pi} 4 \cos u + 4\cos^{2} u + \cos^{3} u \, du \\
& = \pi \times 4\pi = 4\pi^{2}
\end{align} $