*Question 6*
We can compute the Smith normal form of $A$ as follows
$\begin{align}
&\begin{pmatrix}1&-3&0&1\\0&0&1&2\\-2&0&1&0\end{pmatrix} \stackrel{A^{14}(-1) A^{12}(3) }{ \longrightarrow}
\begin{pmatrix}1&0&0&0\\0&0&1&2\\-2&0&1&2\end{pmatrix} \stackrel{S^{24}}{ \longrightarrow} \begin{pmatrix}1&0&0&0\\0&2&1&0\\-2&2&1&0\end{pmatrix}
\\
&\stackrel{ A^{23}(-1) M^{2}\left( \frac{1}{2} \right) }{ \longrightarrow} \begin{pmatrix}1&0&0&0\\0&1&0&0\\-2&1&0&0\end{pmatrix} \stackrel{A_{23}(-1) A_{13}(2) }{ \longrightarrow}
\begin{pmatrix}1&0&0&0\\0&1&0&0\\0&0&0&0\end{pmatrix}
\end{align}$
*Question 7*
(a) $A$ is not square so is not invertible.
(b) Row reduce $(A \mid I_{2})$ as follows: $\begin{align}
& \left( \begin{array}{cc|cc} 2& 4 & 1 & 0 \\ 6 & 8 &0 &1 \end{array} \right) \stackrel{M_{1}\left( \frac{1}{2} \right)}{\longrightarrow} \left( \begin{array}{cc|cc} 1& 2 & \frac{1}{2} & 0 \\ 6 & 8 &0 &1 \end{array} \right) \stackrel{A_{12}\left( -6 \right)}{\longrightarrow} \left( \begin{array}{cc|cc} 1& 2 & \frac{1}{2} & 0 \\ 0 & -4 &-3 &1 \end{array} \right) \\
& \stackrel{A_{21}(-2)M_{2}\left( - \frac{1}{4} \right)}{\longrightarrow} \left( \begin{array}{cc|cc} 1& 0 & -1 & \frac{1}{2} \\ 0 & 1 & \frac{3}{4} & -\frac{1}{4} \end{array} \right)
\end{align}$hence $A^{-1} = \begin{pmatrix}1 & -2 \\ 0 & 1 \end{pmatrix}\begin{pmatrix} 1 & 0 \\0 & -\frac{1}{4} \end{pmatrix}\begin{pmatrix}
1&0 \\ -6 & 1
\end{pmatrix}\begin{pmatrix}
\frac{1}{2} &0 \\ 0 & 1
\end{pmatrix} = \begin{pmatrix}
-1 & \frac{1}{2} \\ \frac{3}{4} & -\frac{1}{4}
\end{pmatrix}$
(c) Row reduce $(A \mid I_{3})$ as follows: $\begin{align}
& \left( \begin{array}{ccc|ccc}
1 & -2 & 0 & 1 & 0 & 0 \\
2 & -3 & 0 & 0 & 1& 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array} \right) \stackrel{A_{12}(-2)}{\longrightarrow}
\left( \begin{array}{ccc|ccc}
1 & -2 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & -2 & 1& 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array} \right) \stackrel{A_{21}(2)}{\longrightarrow}
\left( \begin{array}{ccc|ccc}
1 & 0 & 0 & -3 & 2 & 0 \\
0 & 1 & 0 & -2 & 1& 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array} \right)
\end{align}$hence $A^{-1}= \begin{pmatrix}
1 & 2 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}\begin{pmatrix}
1 & 0 & 0 \\
-2 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}=\begin{pmatrix}
-3 & 2 & 0 \\
-2 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$
*Question 8*
Let $\underline{v}_{1},\underline{v}_{2},\underline{v}_{3}$ equal $(1,1,0)^{T},(0,1,1)^{T},(n,0,n(n-2))^{T}$ respectively.
When $n=0$, $\underline{v}_{3}=(0,0,0)^{T}$. The following linear dependence relation $0\times \underline{v}_{1}+0\times \underline{v}_{2}+\underline{v}_{3}= \underline{0}$ shows that the vectors are linearly dependent. Suppose $\lambda_{1}\underline{v}_{1}+\lambda_{2}\underline{v}_{2}+\lambda \underline{v}_{3} = \underline{k}_{1}$ then considering $\underline{k}$ components gives $\lambda_{2}=1$, considering the $\underline{i}$ component gives $\lambda_{1}=1$ and considering the $\underline{j}$ component gives $\lambda_{2}=-\lambda_{1}=-1$ (which gives a contradiction) so the vectors do not span $\mathbb{R}^3$.
When $n=1$, $\underline{v}_{3}= (1,0,-1)^{T}$. The following linear dependence relation $\underline{v}_{1} -\underline{v}_{2}-\underline{v}_{3}=\underline{0}$ shows that the vectors are linearly dependent. Since $\underline{k}$ cannot be written as a linear combination of $\underline{v}_{1}$ and $\underline{v}_{2}$ as shown above we have that it also cannot be written as a linear combination of the three vectors since $\underline{v}_{3}$ is a linear combination of the first two. The vectors therefore do not span $\mathbb{R}^{3}$.
When $n=2$, $\underline{v}_{3}=(2,0,0)^{T}$ which is not in the span of the first two so the three vectors are linearly independent and span $\mathbb{R}^{3}$. Note that $-\underline{v}_{1}+\underline{v}_{2} + \frac{1}{2}\underline{v}_{3}=\underline{i}$, $\frac{1}{2}\underline{v}_{3}=\underline{k}$ and $\underline{v}_{1}-\frac{1}{2}\underline{v}_{3}=\underline{j}$ so the vectors span $\mathbb{R}^{3}$.
*Question 9*
Let $W = \begin{pmatrix}0 & 2 & 1\\ 1 & -1 & 1 \\ 1 & 2 & 2 \end{pmatrix}$ (i.e. its columns are $\underline{f}_{i}$ for $i=1,2,3$ ).
Compute the RREF of $(W\mid I_{3})$ as follows $\begin{align}
&\left(\begin{array}{ccc|ccc}
0 & 2 & 1 & 1 & 0 & 0 \\
1 & -1 & 1 & 0 & 1 & 0 \\
1 & 2 & 2 & 0 & 0 & 1
\end{array}\right) \stackrel{S_{13}}{\longrightarrow}
\left(\begin{array}{ccc|ccc}
1 & 2 & 2 & 0 & 0 & 1 \\
1 & -1 & 1 & 0 & 1 & 0 \\
0 & 2 & 1 & 1 & 0 & 0
\end{array}\right) \stackrel{A_{12}(-1)}{\longrightarrow}
\left(\begin{array}{ccc|ccc}
1 & 2 & 2 & 0 & 0 & 1 \\
0 & -3 & -1 & 0 & 1 & -1 \\
0 & 2 & 1 & 1 & 0 & 0
\end{array}\right) \\
&\stackrel{A_{23}(-2)A_{21}(-2)M_{2}\left( -\frac{1}{3} \right)}{\longrightarrow}
\left(\begin{array}{ccc|ccc}
1 & 0 & \frac{4}{3} & 0 & \frac{2}{3} & \frac{1}{3} \\
0 & 1 & \frac{1}{3} & 0 & -\frac{1}{3} & \frac{1}{3} \\
0 & 0 & \frac{1}{3} & 1 & \frac{2}{3} & -\frac{2}{3}
\end{array}\right) \stackrel{A_{31}\left( -\frac{4}{3} \right)A_{31}\left( -\frac{1}{3} \right)M_{3}(3)}{\longrightarrow}
\left(\begin{array}{ccc|ccc}
1 & 0 & 0 & -4 & -2 & 3 \\
0 & 1 & 0 & -1 & -1 & 1 \\
0 & 0 & 1 & 3 & 2 & -2
\end{array}\right).
\end{align}$So $W^{-1} = \begin{pmatrix}-4 & -2 & 3 \\ -1 & -1 & 1 \\ 3 &2 & -2 \end{pmatrix}.$
(a) The equation $\underline{w}=\lambda_{1}\underline{f}_{1} +\lambda_{2}\underline{f}_{2}+\lambda_{3}\underline{f}_{3}$ can be rewritten as $W \begin{pmatrix}
\lambda_{1}\\ \lambda_{2} \\ \lambda_{3}
\end{pmatrix} = \begin{pmatrix}
2\\ -5 \\ 1
\end{pmatrix}$so $\begin{pmatrix}
\lambda_{1}\\ \lambda_{2} \\ \lambda_{3}
\end{pmatrix} = W^{-1} \begin{pmatrix}
2\\ -5 \\ 1
\end{pmatrix} = \begin{pmatrix}-4 & -2 & 3 \\ -1 & -1 & 1 \\ 3 &2 & -2 \end{pmatrix} \begin{pmatrix}
2\\ -5 \\ 1
\end{pmatrix} = \begin{pmatrix}
5 \\ 4 \\ -6
\end{pmatrix}$
(b) The coordinates of $\underline{u}_{n}=(1,2,n)^{T}$ with respect to $\underline{f}_{1},\underline{f}_{2},\underline{f}_{3}$ are $\mu_{1},\mu_{2},\mu_{3}$ respectively where $\begin{pmatrix}
\mu_{1}\\ \mu_{2} \\ \mu_{3}
\end{pmatrix} = W^{-1} \begin{pmatrix}
1\\ 2 \\ n
\end{pmatrix} = \begin{pmatrix}-4 & -2 & 3 \\ -1 & -1 & 1 \\ 3 &2 & -2 \end{pmatrix} \begin{pmatrix}
1\\ 2 \\ n
\end{pmatrix} = \begin{pmatrix}
-8+3n \\ -3+n \\ 7 - 2n
\end{pmatrix}$