**Module leader**: Felix Schulze
**Lectures**: Monday 3-4pm, MS.02; Tuesday 10-11am, MS.02; Friday 9-10am, MS.02
**Tutorials**: Weeks 2-10, Monday 13-14, B3.03; Monday 16-17, L4; Thursday 13-14, MS.03
**Due Dates**: 4 assignments, due at noon on the Monday of weeks 4, 6, 8 and 10.
**Workspace**: [[MA263 Multivariable Analysis Workspace.canvas|MA263 Multivariable Analysis Workspace]].
**Course Summary**: ...
---
# 2. Functions on Euclidean Space
### 2.1 Norm and Inner Product
| Examples | Theorems | Definitions/ Lemmas |
| -------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------- |
| | 2.1.1. [[Euclidean Norm]] and [[Inner Product is At Most Product of Vector Norms (Cauchy-Schwartz Inequality)]].<br><br>2.1.2 [[Dot Product is an Inner Product on Real n-Space]] and [[Euclidean Norm Satisfies Polarization Identity]]. | |
### 2.2 The space of Linear maps and matrices
### 2.3 Subsets of Euclidean Space
| Examples | Theorems | Definitions/ Lemmas |
| -------- | -------------------------------------------------------------------------------------------------- | ------------------- |
| | 2.3.1 [[Subset of Euclidean space is sequentially compact iff closed and bounded]] and ... | |
### 2.4 Functions and Continuity
| Examples | Theorems | Definitions/ Lemmas |
| ----------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | --------------------- |
| | 2.4.2 [[Characterization of Continuity Via Open Sets]].<br><br>2.4.3. [[Continuous Functions Preserve Sequentially Compact Subsets of Euclidean Space]].<br><br>2.4.4 [[Composition of Continuous Functions in Continuous]]. | 2.4.1 [[Continuous maps]]. |
| | | |
| [[Linear Maps are Lipschitz Continuous]]. | | |
# 3. Differentiation
See [[Fréchet Differentiation]].
# 4. The Inverse Function Theorem
See [[Inverse function theorem]].
# 5. The Implicit Function Theorem
See [[Implicit function theorem]].
# 6. Second Order Derivatives
# 7. Integration
7.1/2. [[Riemann integration]].
7.3. [[Fubini's theorem]]
7.4. [[Existence of smooth partition of unity of subset of Euclidean space]].,
See [[Change of variables formula]].
# 8. The Divergence Theorem
See [[Divergence theorem]].