**Module leader**: Christian Böhning
---
# 1. Jordan Canonical Form
###### 1.4 The Cayley-Hamilton theorem
See [[Cayley-Hamilton theorem]].
###### 1.5 Calculating the minimal polynomial
**Theorem 1.5.2**: TBC
###### 1.6/7/8/9/10/11 Jordan canonical form
**Lemma 1.6.3** [[Jordan chain is linearly independent]].
**Theorem 1.7.1** [[Existence and uniqueness of Jordan basis for endomorphism of finite-dimensional complex vector space]]
**Theorem 1.7.4:** [[Characterization of characteristic and minimal polynomials by Jordan canonical form]].
**General algorithm for JCF**: TBC.
**Theorem 1.11.3**: [[Spectral characterisation of similar matrices]].
# 2. Functions of Matrices
See [[Functions of Jordan blocks]].
# 3. Bilinear Maps and Quadratic Forms
###### 3.1/2 Bilinear maps
Definition 3.1.1. [[Bilinearity]]
Theorem 3.2.1/2. [[Matrix representations of bilinear map]].
Proposition 3.2.6. [[Normal form of bilinear form on vector space whose characteristic is not two]].
###### 3.3/4 Quadratic forms
Definition 3.3.1. [[Quadratic forms]].
Theorem 3.4.1. [[Symmetric matrix is congruent diagonal matrix]].
Theorem 3.4.4. [[Sylvester's law of inertia]].
###### 3.5 Gram-Schmidt
We define a [[Euclidean spaces|Euclidean space]] as real vector space $V$ together with a symmetric bilinear form $\tau:V\times V \to \mathbb{R}$ such that $\tau(v,v)>0$ for all $v\in V$ (i.e. $\tau$ is positive definite).
**Theorem 3.5.3.** [[Gram-Schmidt orthogonalisation in Euclidean space]].
###### 3.6 Orthogonal transformations
3.6.1/2/3. [[Orthogonal endomorphisms of Euclidean spaces]].
3.6.6 [[QR decomposition]].
###### 3.7/8/9 Orthonormal basis for quadratic forms, SVD
We define adjoints and self-adjoint endomorphisms of Euclidean spaces.
**Theorem 3.7.3**. [[Spectral theorem]].
**Theorem 3.9.1**. [[Singular value decomposition]].
# 4. Duality, quotients, tensors and all that
See [[Dual of vector space]]
See [[Dual of linear map]].
See [[Quotient vector spaces]].
See [[Tensor product of vector spaces]].
See [[Tensor algebra of vector space]].
See [[Symmetric algebra of vector space]] and [[Exterior algebra of vector space]].