*Q1*
Carry out Euclid's algorithm:$\begin{align}101 &= 9\times 11 + 2 \\11 &= 5\times 2 + 1 \end{align}$rearranging we get $\begin{align}
1&=11 - 5 \times 2 \\
&=11 - 5 (101 - 9\times 11) \\
&= 46\times 11 - 5 \times 101
\end{align}$that is $46 \times 11 \equiv 1 \pmod{101}$ and so $\overline{46}$ is the inverse of $\overline{11}$ in $\mathbb{Z}/101\mathbb{Z}.$
*Q2*
(i) $\rho=(1 ,2, 3,5,4)$ and $\tau=(1,3,2)(4,5).$
(ii) $\rho=(1,4)(1,5)(1,3)(1,2)$ and is even
while $\tau=(1,2)(1,3)(4,5)$ is odd.
*Q3*
Let $\rho=(1,2,3)(4,5)$ and $\tau=(1,2,3,4).$
Then $\begin{align} \rho^{-1} &= (4,5)(1,3,2); &\tau^{-1} &=(1,4,3,2) \\ \rho\tau &= (1,3,5,4,2); &\tau \rho^{2} &= (1,4) \end{align}$
*Q4*
Define $H = \left\{ \begin{pmatrix}1 & r\\0 &s \end{pmatrix} : r\in \mathbb{R}, s\in \mathbb{R}^{*}\right\}$
Clearly $I_{2}\in H.$
Let $\begin{pmatrix}1 & r_{1} \\0 & s_{1}\end{pmatrix},\begin{pmatrix}1 & r_{2} \\0 & s_{2}\end{pmatrix}\in H$ then $\begin{pmatrix}1 & r_{1} \\0 & s_{1}\end{pmatrix}\cdot\begin{pmatrix}1 & r_{2} \\0 & s_{2}\end{pmatrix}= \begin{pmatrix}1 & r_{2}+r_{1}s_{2} \\0 &s_{1}s_{2}\end{pmatrix}\in H$since for all $s_{1},s_{2}\in \mathbb{R}^{*},$ $s_{1}s_{2}\in \mathbb{R}^{*}.$
Take $\begin{pmatrix}1 & r \\0 & s\end{pmatrix}\in H$ then $\begin{pmatrix}1 & r \\0 & s\end{pmatrix}^{-1}= \begin{pmatrix}1 & -rs^{-1} \\0 & s^{-1}\end{pmatrix}\in H$since for all $s\in \mathbb{R}^*,$ by definition $s^{-1}\in \mathbb{R}^*$
$H$ is a group since it satisfies [[Two-Step Subgroup Test]]. $\square$
For example, $\begin{align}
\begin{pmatrix}1 & 1 \\0 & 1\end{pmatrix}\begin{pmatrix}1 & 0 \\0 & -1\end{pmatrix}&=\begin{pmatrix}1 & -1 \\0 & -1\end{pmatrix} \\
&\neq \begin{pmatrix}1 & 1 \\0 & -1\end{pmatrix}=\begin{pmatrix}1 & 0 \\0 & -1\end{pmatrix}\begin{pmatrix}1 & 1 \\0 & 1\end{pmatrix}
\end{align}$so $H$ is non-abelian. $\square$
We can check that for all $r\in \mathbb{R},$ $\begin{pmatrix}1 & r \\ 0 &-1 \end{pmatrix}\in H$ has order $2$ so there are infinitely many order $2$ elements of $H.$ $\square$
*Q5*