**Summary**: ...
# 1. Introduction (Week 1)
| Definitions | Theorems | Examples |
| ------------------------------------------------------------ | ---------------------------------------------------------------------------------- | -------- |
| 1.1 [[Convergence]] | [[Uniqueness of Limit of Convergent Sequence]]. | |
| | [[Shift Rule for Limits]]. | |
| | [[Convergent Real Sequence is Bounded]]. | |
| | [[Convergence of Sequence implies Absolute Convergence of Sequence]]. | |
| | [[Algebra of Limits of Convergent Sequences]]. | |
| | [[Limits of Real Sequence Preserve Weak Inequalities]]. | |
| | [[Sandwich Rule]]. | |
| 1.2 [[Continuous Real Function]]. | | |
| 1.3 [[Uniformly Continuous Real Function]]. | 1.4 [[Continuous Real Function on Closed Real Interval is Uniformly Continuous]]. | |
| 1.5 [[Fréchet Differentiation]]. | 1.6 [[Weirestrass-Caratheodory Criterion for Differentiability of Real Function]]. | |
| | | |
| 1.7 [[Riemann integration]] & [[Riemann integration]]. | | |
| 1.8 [[Riemann integration]] & [[Riemann integration]]. | | |
| 1.9 [[Riemann integration]]. | 1.10 [[Riemann's criterion for integrability]]. | |
| | 1.11 [[Continuous real functions are Riemann Integrable]]. | |
| | 1.12 [[Linearity of Riemann integration]] | |
| | 1.13 [[Monotonicity of Riemann Integral]]. | |
| | 1.14 [[Triangle Inequality for Riemann Integral]]. | |
| | 1.15 [[Fundamental theorem of calculus]]. | |
| | 1.16 [[Fundamental theorem of calculus]]. | |
# 2. Sequences and Series of Functions (Week 2 - Week 3)
| Examples | Theorems | Definitions |
| ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------- |
| [[Limit of Sequence of Real Functions is Non Commutative]].<br><br>[[Pointwise Convergence of Sequence of Real Functions doesn't Imply Uniform Convergence]].<br><br>[[Integral of Integrable Pointwise Limit of Sequence of Real Functions May not equal Pointwise Limit of Sequence of Integrals]].<br><br>[[Riemann-Lebesgue Lemma]]. <br><br>[[Integral Success but Pointwise Failure]].<br><br>[[Pointwise Limit of Sequence of Differentiable Real Functions May be Continuous but Not Differentiable]].<br> | <br><br><br><br><br><br><br> | 2.1. [[Pointwise Convergence of Sequence of Real Functions]]. |
### 2.2 Uniform Convergence
| | | |
| ------------------------------------------------------------------------------------------------------------------------------------------------ | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------- |
| **Uniform convergence** of differentiable functions $f_n\to f$ does **not** imply $f$ is differentiable.<br><br><br>[[Supremum Norm is a Norm]]. | <br><br><br><br><br>2.11. [[Sequence of Real Functions is Uniformly Convergent iff Uniformly Cauchy]].<br><br>2.13 [[Uniform Limit of Sequence of Continuous Real Function is Continuous]].<br><br>2.14 [[The Space of Continuous & Bounded Real Functions is Complete wrt Supremum Norm]].<br><br>2.16 [[Uniform Convergence preserves Riemann Integrability]].<br><br>2.17 [[Uniform Convergence and Differentiability]]. | 2.8. [[Uniform Convergence of Sequence of Real Functions]].<br><br>2.10. [[Uniformly Cauchy Sequence of Real Functions]]. |
### 2.3 Series of Functions
| | | |
| ---------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------- |
| <br><br><br><br><br><br><br> | 2.19 [[Integral of Uniformly Convergent Series of Real Functions equals Series of Their Integrals]].<br><br>2.20 [[Uniform Convergence and Differentiabilty for Series of Real Functions]].<br><br>2.21 [[Comparison Test for Uniform Convergence of Series of Real Functions (Weierstrass M-test)]]. | 2.18 [[Pointwise Convergence of Series of Real Functions]].<br><br>2.18 [[Uniform Convergence of Series of Real Functions]]. |
# 3. $\varepsilon$ Convergence & Continuity in $\mathbb{R}^n$ *(Week 3 - Tuesday, Week 4)*
| Examples | Theorems | Definitions/ Lemmas |
| ------------------------------------------------------------------ | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------- |
| 3.2 [[Comparison of Euclidean Norm with Max-Norm & Tax Cab Norm]]. | [[Euclidean spaces are normed spaces]].<br><br>[[Reverse triangle inequality]]. | [[Euclidean Norm]].<br><br>[[Angle Between Nonzero Real Vectors]]. |
| | 3.7. [[Uniqueness of Limit of Convergent Sequence]].<br><br>3.12. Algebra of Limits of Sequences follows from 3.8.<br><br>3.14 Boundedness of Convergent Sequences in $\mathbb{R}^n$ follows from 3.8 or 3.15.<br><br>3.15. Norm of Convergent Sequence converges to Norm of Limit which follows from Reverse triangle inequality.<br><br>3.17 [[Euclidean Space is a Complete Metric Space]].<br><br>3.18 [[Bolzano-Weierstrass theorem]]. | 3.6. [[Convergence]].<br><br>3.8. [[Equivalence of Component-wise Convergence and Convergence for Sequences in Euclidean Space]].<br> |
### 3.5 Continuity
| Examples | Theorems | Definitions |
| ------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------- |
| | 3.4 [[Equivalence of Continuous and Sequentially Continuous Functions Over Euclidean Spaces]]. | 3.19 [[Continuous maps]].<br><br>3.20 [[Sequentially Continuous Functions]].<br><br>3.22 Limit |
| 3.24 [[Separately Continuous Function may be Discontinuous]]. | 3.5 [[Continuous Functions are Separately Continuous]]. | 3.23 [[Separately Continuous Functions]]. |
| <br><br><br><br><br> | 3.25, 3.26, 3.7 [[Algebra of Continuous Functions Over Euclidean Spaces]].<br><br>3.28 [[Composition of Continuous Functions in Continuous]].<br><br>3.29 [[Continuous Function has Component-wise Continuity]]. | <br> |
| | 3.32. [[Continuity of Real-Valued Function of Several Real Variables]]. | 3.31 [[Continuity of Projections of Euclidean Space]]. |
| | | 3.34 [[Linearly Continuous Functions]]. |
# 4. Continuity via Open/ Closed Sets & Sequential Compactness (Tuesday, Week 4 - Tuesday, Week 5)
### 4.1. Closed & Open Subsets of $\mathbb{R}^n$
| Examples | Theorems | Definitions/ Lemmas |
| ------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------- |
| 4.6 [[Open Euclidean Ball is Open]]<br><br>4.8 [[Closed Euclidean Ball is Closed]].<br><br>4.11 Enumeration of rationals ... <br><br> | 4.3 [[Characterization of Open and Closed Subsets of Euclidean Space by Set Complement]].<br><br>4.9 [[Union of Open Sets is Open]].<br><br>4.12 [[Finite Intersection of open subsets of metric spaces are open]].<br><br>4.13 [[Intersection of Closed Sets is Closed]] & [[Finite Union of Closed Sets is Closed]]<br> | 4.1 [[Closed subsets of metric spaces]]<br><br>4.2 [[Open subsets of metric spaces]].<br><br>4.5 [[Open Euclidean Ball]].<br><br>4.7 [[Closed Euclidean Ball]]. |
### 4.2. Continuity & Topology
| Examples | Theorems | Definitions |
| ----------------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------ |
| 4.16 [[Image of open subset of Euclidean space under continuous function need not be open]].<br><br>4.17 Unit sphere is closed. | 4.15 [[Characterization of Continuity Via Open Sets]]. | |
| [[Unit n-Sphere is Sequentially Compact]].<br><br>Closed Euclidean Ball is sequentially compact.<br><br><br><br><br>4.25 Apply EVT to Euclidean Norm. | 4.20 [[Subset of Euclidean space is sequentially compact iff closed and bounded]].<br><br>4.22 [[Continuous Functions Preserve Sequentially Compact Subsets of Euclidean Space]].<br><br>4.23 [[Extreme Value Theorem]]. | [[Sequentially compactness]]. |
# 5. The Space of Linear Maps (Tuesday, Week 5 - Monday, Week 6)
### 5.1. Two norms on the space of linear maps and matrices
| Examples | Theorems | Definitions/ Lemmas |
| -------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | --------------------- |
| | 5.1.1 [[Frobenius & Operator Norms are Comparable]].<br><br>5.1.2 [[Operator norm]].<br><br>5.4. [[Operator Norm of Composition is Bounded by Product of Operator Norms]].<br><br>5.5. [[Characterization of Injective Linear Maps via Euclidean Norm Inequality]].<br><br>5.7 [[Perturbation of Injective Linear Map is Injective]] | 5.2 [[Operator norm]] |
### 5.2. Convergence and Continuity in $L(\mathbb{R}^n, \mathbb{R}^k)$
| Examples | Theorems | Definitions/ Lemmas |
| -------- | -------- | ------------------- |
| | | |
| | | |
### 5.3 The Space $\text{GL}(n,\mathbb{R})$ of Invertible Linear Operators
| Examples | Theorems | Definitions/ Lemmas |
| -------- | -------- | ------------------- |
| | | |
| | | |
# 6. The Derivative (Tuesday, Week 6 - Monday, Week 7)
| Examples | Theorems | Definitions/ Lemmas |
| -------- | -------- | ------------------- |
| | | |
# 7. Complex Analysis (Tuesday, Week 7 - Week 8)
### 7.1 Basic Facts About $\mathbb{C}$
| Examples | Theorems | Definitions |
| -------- | -------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| | 7.7 [[Cauchy-Riemann Equations]].<br><br>7.8 | 7.1 Converegent sequence in $\mathbb{C}$.<br><br>7.2 Open & closed sets in $\mathbb{C}$.<br><br>7.3 Sequential compactness of subset of $\mathbb{C}$.<br><br>7.4 Continuity of $f:\Omega \subset \mathbb{C} \to \mathbb{C}$.<br><br>7.5 [[Complex Differentiability]]<br><br>7.6 Analytic (holomorphic) functions |
### 7.2 Power Series
| Examples | Theorems/ Lemmas | Definitions |
| ----------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------- |
| 7.16 | 7.11 [[Ratio Test for Series]].<br><br>7.12 [[Cauchy's root test for absolute convergence]].<br><br>7.13 [[Radius of Convergence of Complex Power Series]].<br><br>7.14 Application of ratio test to radius of convergence.<br><br>7.15 [[Power Series is Termwise Differentiable within Radius of Convergence]] (proof is non-examinable).<br><br>7.17 [[Power Series Converges Uniformly within Radius of Convergence]] (similar to Weiestrass-M test)<br><br> | 7.9 Convergence of series in $\mathbb{C}
lt;br><br>7.10 Absolute convergence of series in $\mathbb{C}$ |
| 7.19 Trig-exp-hyperbolic relations. | 7.20 | 7.18 Power series expansion of exponential, trigonometric & hyperbolic functions.<br><br> |
| [[Complex Logarithm]]. | 7.21 [[Argument of Complex Number]]. | |
### 7.3 Complex Integration, Contour Integrals
| Examples | Theorems | Definitions |
| -------- | ----------------------------------------------------------------------------------------------------------------------- | -------------------------- |
| | 7.24 [[Contour Integral along Reversed Curve]] & [[Contour Integral of Directed Curve is Reparametrisation Invariant]]. | 7.22 [[Contour Integral]]. |
| | 7.28 [[Fundamental Theorem of Calculus for Contour Integrals]]. | |
**7.31 Links with Green's and Divergence Theorems**
| Examples | Theorems | Definitions |
| --------------------------------- | ------------------------------------------------------------------------------------------ | ---------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| [[Fundamental Contour Integral]]. | 7.29 [[Cauchy-Goursat Theorem]].<br><br>7.31 [[Principle of Deformation of Contours]].<br> | 7.30 [[Simple connectedness]].<br><br> |
| | 7.33 [[Cauchy's Integral Formula]].<br><br>7.35 [[Extension of Cauchy's Integral Formula]]. | 7.32 notation for interior and exterior of cure $\gamma$ are $I(\gamma)$ and $O(\gamma)$ so that $O(\gamma)$ is on your right ($\gamma$ is positively oriented). |
**7.32 Consequences of Cauchy's Theorem**
| Examples | Theorems | Definitions |
| -------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ----------- |
| | 7.36 [[Taylor's theorem]].<br><br>7.38 [[Louiville's Theorem (Every Bounded Entire Function is Constant)]].<br><br>7.39 [[Fundamental Theorem of Algebra]]. <br><br>7.40 [[Uniform Limit of Analytic Functions is Analytic]]. | |
**7.33 Computing Integrals in $\mathbb{R}$ with Cauchy’s Integral Formula**
See [[Evaluating Improper Integrals Using Contour Integration]].