> [!NOTE] Lemma (Smith Normal Form) > Let $R$ be a [[Principal Ideal Domain|principal ideal domain]]. Every [[Matrix|matrix]] $A \in \operatorname{Mat}_{n \times m}(R)$ with entries in $R$ is [[Equivalence of Matrices|equivalent]] to a matrix in Smith normal form: > > There exist invertible matrices $P \in \operatorname{Mat}_{n \times n}(R)$ and $Q \in \operatorname{Mat}_{m \times m}(R)$ such that the product matrix $P A Q$ is of the following form: > > $\begin{gathered} > \text { PAQ = } \\ > \left[\begin{array}{cccccccc} > a_1 & 0 & \cdots & \cdots & \cdots & \cdots & \cdots & 0 \\ > 0 & a_2 & 0 & \cdots & \cdots & \cdots & \cdots & 0 \\ > 0 & 0 & a_3 & 0 & \cdots & \cdots & \cdots & 0 \\ > \vdots & \vdots & \vdots & \ddots & \cdots & \cdots & \cdots & \cdots \\ > 0 & 0 & \cdots & \cdots & a_m & 0 & \cdots & 0 \\ > \vdots & \vdots & \vdots & \vdots & 0 & 0 & \cdots & 0 \\ > 0 & 0 & \cdots & \cdots & \cdots & \cdots & \cdots & 0 > \end{array}\right] > \end{gathered}$ > > such that each $a_i$ [[Divisibility|divides]] $a_{i+1}$. ###### Proof