# Definition(s)
> [!NOTE] Definition (Metric)
> A *metric* $d$ on a set $X$ is a [[Function|function]] $d:X\times X\to[0,\infty)$ which is
>
> 1. Non-degenerate: $\forall x,y\in X$ $d(x,y)=0 \iff x=y$
> 2. Symmetric: $\forall x,y\in X,$ $d(x,y)=d(y,x)$
> 3. Satisfies the triangle inequality: $\forall x,y,z\in X,$ $d(x,y)\leq d(x,z)+d(z,y)$
> [!Example] Example
> By [[Euclidean Metric on Real n-Space is a Metric]], $d:\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ defined by $d(x,y)=\lvert \lvert x-y \rvert \rvert$ is a metric on $\mathbb{R}^n .$
# Properties(s)
# Application(s)
**More examples**:
# Bibliography