> [!NOTE] Theorem
> Let $G$ be a [[Group|group]]. Let $g\in G$ with finite [[Order of Group Element|order]]. Then for any $m\in \mathbb{Z},$ $\text{ord}(g^{m})= \frac{\text{ord}(g)}{\gcd(m, \text{ord}(g))}$where $\gcd(m,n)$ denotes the [[Greatest Common Divisor (GCD)|GCD]] of $m$ and $n$ and $g^{n}$ denotes the $n$th [[Integer Power of Group Element|power]] of $g.$
**Proof**: Let $d=\gcd(m,n).$ Then there exists $m',n'\in \mathbb{Z}$ such that $m=dm'$ and $n=dn'.$ Then $\begin{align}
(g^{m})^{n'} &= (g^{dm'})^{n'} \\
& = (g^{dn'})^{m'} \\
&= (g^{n})^{m'} \\
&= e^{m'} \\
&= e
\end{align}$Now BWOC, suppose order of $g^{m}$ is $k<n'.$
By [[Bézout's Lemma]], there exists $x,y\in\mathbb{Z}$ so that $mx+ny=d.$ Thus $\begin{align}
g^{dk} &= g^{(mx+ny)k} \\
&= g^{mxk}g^{nyk} \\
&=e
\end{align}$But $dk<dn'=n$ contradicting the fact that $g$ has order $n.$ Therefore $|g^{m}|=n'= \frac{n}{\gcd(n,m)} .$
# Applications
See [[Subgroups of Cyclic Group]] and [[Number of Primitive Roots Modulo Prime]].