# Definition(s)
> [!NOTE] Definition 1 (Series of Real Functions)
> Let $(f_{n})$ be a [[Sequences|sequence]] of real functions $f_{k}:\Omega \subset \mathbb{R}\to \mathbb{R}.$ Let $(S_{n})$ be the sequence of partial sums, with $S_{n}:\Omega\to \mathbb{R}$ defined by $S_{n}(x)=\sum_{k=1}^{n} f_{k}(x)$Then we say that the series $\sum_{k=1}^{\infty} f_{k}(x)$converges pointwise to $S:\Omega\to \mathbb{R}$ in $\Omega$ if $S_{n}$ [[Pointwise Convergence of Sequence of Real Functions doesn't Imply Uniform Convergence|converges pointwise]] to $S.$
> [!Example] Example
> Contents
# Properties(s)
# Application(s)
**More examples**:
# Bibliography