Define $g_{n},f_{n}:[0,1]\to \mathbb{R}$ by $g_n(x)=\left\{\begin{array}{ll} 2 n x & x \in\left[0, \frac{1}{2 n}\right) \\ -2 n\left(x-\frac{1}{n}\right) & x \in\left[\frac{1}{2 n}, \frac{1}{n}\right) \\ 0 & x \in\left[\frac{1}{n}, 1\right] \end{array} \quad \quad h_n(x)= \begin{cases}2 n^2 x & x \in\left[0, \frac{1}{2 n}\right) \\ -2 n^2\left(x-\frac{1}{n}\right) & x \in\left[\frac{1}{2}, \frac{1}{n}\right) \\ 0 & x \in\left[\frac{1}{n}, 1\right]\end{cases}\right.$ Then $g_{n}\to 0$ while $h_{n}\to0.$ ###### Sketch sequences ```run-python import numpy as np import matplotlib.pyplot as plt def g(n, x): if (x >= 0) and (x < 1 / (2 * n)): return 2 * n * x if (x >= 1 / (2 * n)) and (x < 1 / n): return -2 * n * (x - 1 / n) if (x >= 1 / n) and (x <= 1): return 0 def h(n, x): if (x >= 0) and (x < 1 / (2 * n)): return 2 * (n ** 2) * x if (x >= 1 / (2 * n)) and (x < 1 / n): return -2 * (n ** 2) * (x - 1 / n) if (x >= 1 / n) and (x <= 1): return 0 n_values = [1, 2, 3, 5, 10] step = 0.01 x = np.arange(0, 1, step) figure, axis = plt.subplots(1, 2) for i in n_values: y1 = np.array([g(i, x_val) for x_val in x]) y2 = np.array([h(i, x_val) for x_val in x]) axis[0].plot(x, y1, label=f"n={i}") axis[1].plot(x, y2, label=f"n={i}") axis[0].set_title(r"$g_{n}quot;) axis[1].set_title(r"$h_{n}quot;) axis[0].legend() axis[1].legend() plt.show() ```