> [!Example] Example
> Consider the sequence $(f_{n})$ given by $f_{n}:[0,\infty)\to \mathbb{R},$ $f_{n}(x)=x^{\frac{1}{n}}.$
>
> For all $x\in (0,\infty),$ $\lim_{ n \to \infty }x^{1/n} = 1.$
>
> As a result, the [[Pointwise Convergence of Sequence of Real Functions|limit]] of the sequence of real functions $(f_{n})$ is $f(x)=\begin{cases}0 & x=0, \\ 1 & x>0. \end{cases}$
Sketch $f_{n}$ below:
```run-python
import numpy as np
import matplotlib.pyplot as plt
def f(n,x):
return x**(1/n)
step = 0.01
x = np.arange(0, 2, step)
n = [1,2,3,5,20]
for i in n:
y = f(i, x)
plt.plot(x,y,label=f'$f_{i}