> [!NOTE] Definition (Univariate Real Power Series About Zero)
> Let $(a_{n})_{n\geq 0}$ be a [[Real sequences|sequence of real numbers]]. The power series in $x$ centred at $0$ is given by the [[Series of Real Sequence|series]] $\sum_{n=0}^{\infty} a_{n} x^{n}$where $x\in \mathbb{R}$ is a variable.
# Properties
By [[Radius of Convergence of Complex Power Series]], ...
By [[Continuity of Real Power Series About Zero on Interval of Convergence]], ...
By [[Cauchy Product of Univariate Real Power Series About Zero Converges to Product]], ....
# Applications
**Examples**:
> [!Example] Examples
>
> - [[Taylor's Theorem With Lagrange Remainder for Real Function]]: $f(x) =f(a)+f^{\prime}(a)(x-a)+\frac{1}{2 !}(x-a)^2+\ldots$
> - [[Real Exponential Function]]: $e^x =1+x+\frac{1}{2 !} x^2+\frac{1}{3 !} x^3+\ldots$
> - [[Real Natural Logarithm Function]]: $\ln (1+x) =x-\frac{1}{2} x^2+\frac{1}{3} x^3-\frac{1}{4} x^4+\ldots, \quad|x|<1$
> - [[Trigonometric Functions]]: $\begin{align}
> \sin (x) & =x-\frac{1}{3 !} x^3+\frac{1}{5 !} x^5-\frac{1}{7 !} x^7+\ldots \\
> \cos (x) & =1-\frac{1}{2 !} x^2+\frac{1}{4 !} x^4-\frac{1}{6 !} x^6+\ldots \\
> \end{align}$
> - [[Binomial Series]]: $(1+x)^p =1+p x+\frac{p(p-1)}{2 !} x^2+\frac{p(p-1)(p-2)}{3 !} x^3+\ldots, \quad|x|<1$; $(a+x)^p =a^p+p a^{p-1} x+\frac{p(p-1)}{2 !} a^{p-2} x^2+\frac{p(p-1)(p-2)}{3 !} a^{p-3} x^3+\ldots, \quad\left|\frac{x}{a}\right|<1$
> - [[Geometric Series]]: $\sum x^{n}$.
>