# Definition(s)
> [!NOTE] Definition 1 ()
> Let $R$ be an [[Integral Domain|integral domain]]. Then $R$ is principal ideal domain if and only if, for every [[Ideal of Ring|ideal]] $I$ of $R$, $I$ is [[Principal Ideal|principal]] (i.e. $I=aR$ for some $a\in R$).
> [!Example] Example
> Contents
# Properties(s)
# Application(s)
**More examples**:
# Reference(s)
[^1]: Ref 1