> [!NOTE] Theorem (Product With Ring Negatives)
> Let $(R,+,\times)$ be a [[Rings|ring]]. Then $\forall x,y \in R: (-x)\times(-y)=x \times y$
Proof. By [[Product With Ring Negative]], $\begin{align}
(-x)\times(-y) &= -(x \times (-y)) \\
& = -(-(x \times y)) \\
& = x \times y &\text{since $a$ is the inverse $-a$}
\end{align}$