Property of [[Real sequences]].
**Definition**
We write $a_{n} \to \infty$ as $n \to \infty$ if for every $R \in \mathbb{R}$, exists $N$ such that $a_{n} > R$ for every $n \geq N$.
See **Property** [[Reciprocal of Terms of Properly Divergent Real Sequence Tends to Zero]].
### Examples
- $n\to \infty$ as $n \to \infty$: Given $R \in \mathbb{R}$, take $N>R$ using [[Archimedean Property of Real Numbers]].
- $\sqrt{ n } \to \infty$ as $n \to \infty$: Given $R \in \mathbb{R}$ take $N>R^{2}$ then for all $n \geq N$ we have $\sqrt{ n } \geq \sqrt{ N } \geq R$.
- [[Criterion for Convergence of Geometric Sequence]].
- [[Monotone Bounded Real Sequence is Convergent]].