> [!NOTE] Lemma > For all $p\in\mathbb{R},$ $\exp(p)=e^{p}$where $e$ denotes the [[Euler's Number|Euler's number]] and $\exp$ denotes the [[Real Exponential Function|real exponential function]]. **Proof**: By definition $e^{p}=\exp(p\log (e))$and $\log(e)=1$ since $e=\exp(1)$ and so RHS expression is $\exp(p).$