Let $A, B, C \in \mathrm{Mat}_{m n}$ and let $k, s \in \mathbb{R}$ be scalars. The following identities hold:
(i) $A+0_{m n}=A$
(ii) $A+B=B+A$
(iii) $0 A=0_{m n}$
(iv) $A+(-A)=0_{m n}$
(v) $(A+B)+C=A+(B+C)$
(vi) $1 A=A$
(vii) $(k+s) A=k A+s A$
(viii) $k(A+B)=k A+k B$
(ix) $k(s A)=(k s) A$