> [!Definition] Definition (Real valued function of several real variables)
> A [[Function|function]] $f:U \subset \mathbb{R}^{n} \to \mathbb{R}$ for some $n=1,3,4,\dots$
>
> [!info]
> Note that for $n=1$, $f$ is a [[Real Function]].
# Properties
- Represents a [[Algebraic Surface]] in $\mathbb{R}^{n+1}$.
- If $n\leq 2$, the real-valued function can be visualised in $\mathbb{R}^{3}$ using a [[Graph of functions on real n-space|graph]].
- If $n=2,3$ the real-valued function can also be visualised using [[Level Sets of Real-Valued Function of Several Real Variables|contour plots]].
- See [[Fréchet Differentiation]].
- See [[Fréchet Differentiation]].
- See [[Fréchet Differentiation]] & [[Normal Vector of Surface]].
- See [[Critical Point of Real-Valued Function on Real 2-Space]].
# Examples