**Course leader**: ......
**Course summary**: You should be able to state & use definitions: state, prove and use theorems - hence examples. Main theorems are law of averages and central limit theorem as they make use of most of the precedent definitions and theorems except chapters 2 and 4 - namely Counting and Conditional Probability namely. Cumulative Functions and Moments used for single theory.
---
# 1. Uniform Probability Spaces
| Definitions | Theorems | Examples |
| ----------------------------------------------------------- | ------------------------------------------------------------------------------------ | -------- |
| 1.1 [[Uniform Probability Space with Finite Sample Space]]. | | |
| 1.2 [[Finite Set]] & [[Cardinality]]. | 1.1 [[Probability of Events in Uniform Probability Space With Finite Sample Space]]. | |
| | | |
# 2. Counting
| Definitions | Theorems | Examples |
| ----------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------ | -------- |
| | 2.0 [[Cardinality of Union of Disjoint Sets]] & [[Product Rule for Counting (Fundamental Counting Principle)]]. Proofs not given. | |
| 2.1 [[List]]. Set of all $k$-tuples over finite set $A$ with cardinality $n$ is denoted $S_{n,k}(A).$ | 2.1 [[Number of Lists of Length k whose Elements are Taken From a Finite Set]]. | |
| 2.2 [[Partial Permutation of n Letters (Ordered Selection)]]. Set of $k$-permutations of finite set $A$ with cardinality $n$ is denoted $O_{n,k}(A).$ | 2.2 [[Number of k-Permutations of n Letters (Injections between Finite Sets)]]. | |
| 2.3 [[Combination of n Letters]]. Set of $k$-combinations of finite set $A$ with cardinality $n$ is denoted $C_{n,k}(A).$ | 2.3 [[Number of k-Combinations of n Letters]]. | |
| 2.4 [[Permutation of Finite Degree]]. Denoted $S_{n}$ or $S_{n}(A).$ | 2.1 [[Number of Permutations of n Letters]]. | |
| 2.5 [[Partition of a Set]]. | 2.4 [[Number of Partitions of n Letters into Subsets of Given Sizes]]. | |
# 3. Probability Spaces
| Definitions | Theorems | Examples |
| ---------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------- |
| 3.1 [[Sample Space]]. In ST120, we only consider finite sample spaces. | | |
| 3.2 [[Event Space]]. | 3.1.1 [[Event Spaces are Closed Under Finite Unions]]. | |
| | 3.1.2 [[Event Spaces are Closed Under Finite Intersections]]. | |
| | 3.1.3 [[Event Spaces are Closed under Countably Infinite Intersections]]. | |
| 3.2 [[Probability Measure]]. | | |
| 3.4 [[Probability Space]]. | 3.2.a [[Probability of Subset of Event]]. | |
| | 3.2.b [[Probability of Complement of Event]]. | |
| | 3.2.c [[Probability of Empty Set is Zero]]. | |
| | 3.3 [[Inclusion-Exclusion Principle for Probability Measure]]. Proof not given. We prove the special case: *[[Probability Measure is Strongly Additive]]. | [[Enumerating surjections between finite sets]]. |
| | 3.4 [[Probability of Subset of Event is Less Than or Equal to Probability of Event]]. | |
| | 3.5 [[Probability of Union is Less than Sum of Probabilities (Boole's Inequality)]]. | |
# 4. Conditional Probability & Independence
| Definitions | Theorems | Examples |
| ----------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------- | -------- |
| 4.1 [[Conditional Probability]]. | 4.1 [[Conditional Probability Defines Probability Space]]. | |
| | 4.2 [[Chain Rule for Probability]]. | |
| | 4.3 [[Law of Total Probability]]. | |
| | 4.1 [[Bayes' Theorem]]. | |
| 4.3 [[Independence of Two Events]]. | 4.3 [[Independent of Event iff Independent of Complement]]; [[Disjoint Events are Independent iff Probability of one is Zero]]; | |
| 4.4 [[Pairwise Independent Set of Events]]; [[Mutually Independent Set of Events]]. | | |
# 5. Random Variables
| Definitions | Theorems | Examples |
| --------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| 5.1 [[Random Variables]]. | | |
| 5.2 [[Probability Distribution of Real-Valued Random Variable]]. | 5.1 [[Probability Distribution of Real-Valued Random Variable is Probability Measure]] | |
| 5.3 [[Discrete random variables]]. | | |
| 5.4 [[Probability Mass Function of Discrete Real-Valued Random Variable]]. | | |
| 5.5 [[Discrete Support of Distribution of Discrete Real-Valued Random Variable]]. | 5.2 [[Probability Distribution of Discrete Real-Valued Random Variable in Terms of Probability Mass Function]] | |
| 5.6 *[[Probability Mass Function]]. | 5.3 *[[Probability Mass Function Defines Discrete Real-Valued Random Variable]]. | [[Bernoulli Distribution]]. |
| | | [[Geometric Distribution]]; [[Geometric Distribution Probability Mass Function is Probability Mass Function]]. |
| | | [[Binomial Distribution]]; [[Binomial Distribution Probability Mass Function is Probability Mass Function]]. |
| | | [[Poisson Distribution]]; [[Poisson Distribution Probability Mass Function is Probability Mass Function]]; *[[Binomial Distribution Approximated by Poisson Distribution]]. |
# 6. Expectation
| Definitions | Theorems | Examples |
| ------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------- |
| 6.1 [[Expectation of Discrete Real-Valued Random Variable]]. | | [[Expectation of Poisson Distribution]]; [[Expectation of Binomial Distribution]]; [[Expectation of Geometric Distribution]]; |
| 6.2 [[Integrable Discrete Real-Valued Random Variable]]. | 6.1.1 [[Expectation of Discrete Real-Valued Random Variable is Unitary]]. | 6.2 *[[Event Indicator Function]]. |
| | 6.1.2 [[Expectation of Discrete Real-Valued Random Variable is Monotone]]. Proof not given in this chapter. | |
| | 6.1.3 [[Expectation of Discrete Real-Valued Random Variable is Linear]]. Proof not given in this chapter. | |
| | 6.1 [[Expectation of Real-Valued Function of Discrete Real-Valued Random Variable]]. Proof not given in this chapter. | |
| 6.3 [[Square-Integrable Discrete Real-Valued Random Variable]]. | | |
| 6.4 [[Variance of Square-Integrable Discrete Real-Valued Random Variable]]. | | [[Variance of Poisson Distribution]]; [[Variance of Geometric Distribution]]; [[Variance of Bernoulli Distribution]]; |
| 6.5 [[Standard Deviation of Square-Integrable Discrete Real-Valued Random Variable]]. | [[Variance of Linear Transformation of Square-Integrable Discrete Real-Valued Random Variable]]. Thus $\sigma(aX)=\|a\|\cdot \sigma(x).$ Proof not given. | |
# 7. Multivariate Discrete Distributions
| Definitions | Theorems | Examples |
| --------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------- | -------- |
| 7.1 [[Joint Probability Mass Function of Discrete Real-Valued Random Variables]]. | 7.1 [[Marginal Probability Mass Function of Discrete Real-Valued Random Variable]]. | |
| | 7.1 *[[Expectation of Real-Valued Function of Bivariate Discrete Real-Valued Random Variable]]. | |
| | 7.1.1 [[Expectation of Discrete Real-Valued Random Variable is Linear]]. Proof given in this chapter. | |
| 7.2 [[Independence of Two Discrete Real-Valued Random Variables]]. | 7.1 [[Expectation of Product of Two Independent Discrete Real-Valued Random Variables]]. | |
| 7.3 [[Pairwise Independent Set of Discrete Real-Valued Random Variables]]. | 7.2 [[Variance of Sum of Pairwise Independent Square-Integrable Discrete Real-Valued Random Variables]]. | |
| 7.4 [[Mutually Independent Set of Discrete Real-Valued Random Variables]]. | | |
# 8. The Law of Averages
| Definitions | Theorems | Examples |
| ----------- | ---------------------------------------------- | -------- |
| | 8.1 [[Strong Law of Large Numbers]]. Proof not given here. | |
# 9. Covariance
| Definitions | Theorems | Examples |
| ------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | -------- |
| 9.1 [[Covariance of Square-Integrable Discrete Real-Valued Random Variables]]. | 9.0.1 [[Covariance of Square Integrable Discrete Real-Valued Random Variables is Symmetric]]. | |
| | 9.0.2 [[Covariance of Square Integrable Discrete Real-Valued Random Variable with Itself]]. | |
| | 9.1 [[Covariance Square Integrable Discrete Real-Valued Random Variables is Bilinear]]. | |
| | 9.2 [[Variance of Sum of Square-Integrable Discrete Real-Valued Random Variables]]. | |
| 9.2 [[Uncorrelated Square-Integrable Discrete Real-Valued Random Variables]]. | 9.3 [[Variance of Sum of Uncorrelated Square-Integrable Discrete Real-Valued Random Variables]]. | |
| | 9.3.1 *[[Square Root Law]]. | |
| | 9.4.1 [[Covariance of Square-Integrable Discrete Real-Valued Random Variables as Expectation of Product minus Product of Expectations]]. | |
| | 9.4.2 [[Pairwise Independent Square-Integrable Discrete Real-Valued Random Variables are Uncorrelated]]. Which gives another proof of [[Variance of Sum of Pairwise Independent Square-Integrable Discrete Real-Valued Random Variables]]. | |
# 10. Chebyshev's Inequality
| Definitions | Theorems | Examples |
| ----------- | ----------------------------------------------------------------------------------------------- | -------- |
| | 10.1 [[Markov's Inequality for Non-negative Integrable Discrete Real-valued Random Variables]]. | |
| | 10.2 [[Chebyshev's Inequality for Square-Integrable Discrete Real-valued Random Variables]]. | |
| | 10.3 [[Strong Law of Large Numbers]]. | |
# 11. Correlation Coefficient
| Definitions | Theorems | Examples |
| -------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------- | -------- |
| 11.1 [[Correlation Coefficient of Square-Integrable Discrete Real-Valued Random Variables]]. | 11.2 [[Correlation Coefficient of Square-Integrable Discrete Real-Valued Random Variables is Invariant Under Linear Transformations of Variables]]. | |
| | 11.2.1 *[[Correlation Coefficient of Square-Integrable Discrete Real-Valued Random Variables is Symmetric]]. | |
| | 11.2.2 *[[Correlation Coefficient of Square-Integrable Discrete Real-Valued Random Variables involving Negative]]. | |
| | 11.3 [[Absolute Value of Correlation Coefficient of Square-Integrable Discrete Real-Valued Random Variables is Bounded Above by 1]]. | |
# 12. Central Limit Theorem
| Definitions | Theorems | Examples |
| ----------- | --------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------- |
| | 12.1 [[Central Limit Theorem]]. Proof not given in this module. | 12.1 [[ST120 Example 2.1 (Central Limit Theorem Application)]] |
# 13. Continuous Random Variables
| Definitions | Theorems | Examples |
| -------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| 13.1 [[Probability Density Function]]. | | |
| 13.1 [[Continuous random variables]]. | | 13.2 [[Continuous Uniform Distribution]] |
| | | 13.3 [[Normal Distribution]]; [[Standard Normal Random Variable as Transformation of Normal Random Variable]]; *[[Normal Distribution Probability Density Function is Probability Density Function]]; |
| | | 13.4 [[Exponential Distribution]]; [[Exponential Distribution is Memoryless]]. |
| 13.2 [[Integrable Continuous Real-Valued Random Variable]]. | | 13.1 [[Expectation of Continuous Uniform Distribution]]. |
| 13.2 [[Expectation of Integrable Continuous Real-Valued Random Variable]]. | | 13.2 [[Expectation of Exponential Distribution]]. |
| | | 13.3 [[Expectation of Standard Normal Distribution]]. |
| | | 13.4 [[Continuous Real-Valued Random Variable with Cauchy Distribution is Not Integrable]]. |
| 13.3 [[Square-Integrable Continuous Real-Valued Random Variable]]. | 13.1 [[Expectation of Real-Valued Function of Continuous Real-Valued Random Variable]]. | 13.4 [[Comparison of Discrete and Continuous Real-Valued Random Variables]]. |
| 13.4 [[Variance of a Square-Integrable Continuous Real-Valued Random Variable]]. | | 13.8 [[Variance of Continuous Uniform Distribution]]. |
| | | 13.9 [[Variance of Exponential Distribution]]. |
| | | 13.10 [[Variance of Standard Normal Distribution]]. |
# 14. A Single Theory For Discrete and Continuous
| Definitions | Theorems | Examples |
| ------------------------------------------------------------------------------------------ | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -------- |
| 14.1 [[Cumulative Distribution Function of Real-Valued Random Variable]]. | 14.1 [[Cumulative Distribution Determines Probability Distribution for Real-Valued Random Variable]] asserts that any two real-valued random variables with same CDF have the same probability distribution function. Proof not given in this course. | |
| 14.2.1 [[Integrable Real-Valued Random Variable]] if 'expectation' is defined and finite. | 14.2 [[Expectation of Integrable Real-Valued Random Variable is Unitary]]. | |
| 14.2.2 [[Expectation of Integrable Real-Valued Random Variable]]. Formula not given. | 14.2 [[Expectation of Integrable Real-Valued Random Variable is Linear]]. | |
| 14.2.3 [[Square-Integrable Real-Valued Random Variable]]. | 14.2 [[Expectation of Integrable Real-Valued Random Variable is Monotone]]. | |
| 14.2.4 [[Variance of Square-Integrable Real-Valued Random Variable]]. | | |
| 14.3 [[Covariance of Square-Integrable Real-Valued Random Variables]]. | | |
# 15. Joint Distributions and Independence
| Definitions | Theorems | Examples |
| --------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------ | ---------------------------------------------------------------------------------------- |
| 15.1 [[Joint Probability Density Function of Continuous Real-Valued Random Variables]]. | | |
| 15.2 [[Joint Cumulative Distribution Function of Real-Valued Random Variables]]. | | |
| 15.3 [[Independence of Two Real-Valued Random Variables]]. | 15.1 [[Joint Cumulative Distribution Function of Two Independent Real-Valued Random Variables]]. | |
| | 15.1 [[Expectation of Product of Two Independent Real-Valued Random Variables]]. | |
| 15.4 [[Pairwise Independent Set of Real-Valued Random Variables]]. | | |
| 15.5 [[Mutually Independent Set of Real-Valued Random Variables]]. | | 15.4 [[Uncorrelated Square-Integrable Real-Valued Random Variables]] |
| | | 15.4 [[Variance of Sum of Uncorrelated Square-Integrable Real-Valued Random Variables]]. |
| | | 15.4 [[Markov's Inequality for Non-negative Integrable Real-valued Random Variables]]. |
| | | 15.5 [[Chebyshev's Inequality for Square-Integrable Real-valued Random Variables]]. |
| | | 15.4 [[Strong Law of Large Numbers]]. |
| | | 15.4 [[Central Limit Theorem for Real-Valued Random Variables]]. |
# 16. Sums of Independent Random Variables
| Definitions | Theorems | Examples |
| ----------- | ---------------------------------------------------------------------------------------- | -------- |
| | 16. [[Probability Distribution of Sum of Two Independent Real-Valued Random Variables]]. | |
| | 16.1 *[[Sum of Two Independent Normally Distributed Real-Valued Random Variables]]. | |
# 17. Moments and Moment Generating Functions
| Definitions | Theorems | Examples |
| ------------------------------------------------------------------ | --------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------ |
| 17. [[Moment generating function of real-valued random variable]]. | | 17.1 [[Moment Generating Function of Geometric Distribution]]. |
| | | 17.2 [[Moment Generating Function of Poisson Distribution]]. |
| | | 17.3 [[Moment Generating Function of Normal Distribution]]. |
| 17.2 [[Raw Moment of Real-Valued Random Variable]]. | 17.1 [[Moment in terms of Moment Generating Function of Real-Valued Random Variable]]. Proof not given in this module. | [[Expectation of Integrable Real-Valued Random Variable is First Raw Moment]]. |
| | | |
| | | |
| | 17.2 [[Moment Generating Function of Linear Transformation of Real-Valued Random Variable]] | |
| | 17.3 [[Moment Generating Function of Sum of Two Independent Real-Valued Random Variables]]. | |
| | 17.1 [[Moment Generating Function of Real-Valued Random Variable Determines Probability Distribution]]. Proof not given in this module. | [[Sum of Two Independent Normally Distributed Real-Valued Random Variables]] |