Let $\tilde{t}=\frac{t}{t_{}s}$ and $\tilde{y}(\tilde{t})=\frac{y(t)}{y_{s}}$ denote nondimensional time and height respectively with some scales $t_{s}$ and $y_{s}$.
By chain rule $
\begin{aligned}
\frac{d}{d t} y(t) & =\frac{d}{d t}\left(y_s \tilde{y}\left(\frac{t}{t_s}\right)\right)=y_s \tilde{y}^{\prime}\left(\frac{t}{t_s}\right) \frac{1}{t_s}=\frac{y_s}{t_s} \tilde{y}^{\prime}(\tilde{t}), \\
\frac{d^2}{d t^2} y(t) & =\frac{d}{d t}\left(y_s \tilde{y}^{\prime}\left(\frac{t}{t_s}\right) \frac{1}{t_s}\right)=y_s \tilde{y}^{\prime \prime}\left(\frac{t}{t_s}\right) \frac{1}{t_s^2}=\frac{y_s}{t_s^2} \tilde{y}^{\prime \prime}(\tilde{t}) .
\end{aligned}
$
The IVP becomes $
\begin{align}
\frac{y_s}{t_s^2} \tilde{y}^{\prime \prime}(\tilde{t})&=-\frac{g}{\left(1+\tilde{y}(\tilde{t}) \frac{y_s}{R}\right)^2}, \quad \tilde{t}>0, \quad \tilde{y}(0)=0, \quad \frac{y_s}{t_s} \tilde{y}^{\prime}(\tilde{t})=v \\
\iff \frac{y_s}{gt_s^2} \tilde{y}^{\prime \prime}(\tilde{t})&=-\frac{g}{\left(1+\tilde{y}(\tilde{t}) \frac{y_s}{R}\right)^2}, \quad \tilde{t}>0, \quad \tilde{y}(0)=0, \quad \tilde{y}^{\prime}(\tilde{t})=\frac{t_{s}}{y_{s}}v
\end{align}
$
We note that the dimensions of the parameters are $[v] = L/T , [g] = L/T^2, [R] = L.$
Therefore, the parameters in the non-dimensional equation $\frac{y_{s}}{gt_{s}^{2}}, \frac{y_{s}}{R}, \frac{t_{s}v}{y_{s}}$are indeed non-dimensional.
...