# Definition(s)
> [!NOTE] Definition 1 (Spherical Metric)
> Let $n\in \mathbb{N},r\geq 0$ and $S_{r}^n$ denote the [[n-Sphere|n-dimensional sphere]] of radius $r.$ The spherical distance between two points $P,Q\in S_{r}^n$ is the length of the shortest arc of the [[Spherical Line|great circle]] joining them which is given by $d_{S_{r}^n}(P,Q)= r \arccos\left( \frac{\langle P, Q\rangle}{r^2} \right).$
> [!Example] Example
> Contents
# Properties(s)
# Application(s)
**More examples**:
# Bibliography